Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465133, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38996515

RESUMO

The use of a ternary mobile-phase system comprising ammonium sulphate, sodium chloride, and phosphate buffer was explored to tune retention and enhance selectivity in hydrophobic interaction chromatography. The accuracy of the linear solvent-strength model to predict protein retention with the ternary mobile-phase system based on isocratic scouting runs is limited, as the extrapolated retention factor at aqueous buffer conditions (k0) cannot be reliably established. The Jandera retention model utilizing a salt concentration averaged retention factor (k¯0) in aqueous buffer for ternary systems overcomes this bottleneck. Gradient retention factors were derived based on isocratic scouting runs after numerical integration of the isocratic Jandera model, leading to retention-time prediction errors below 11 % for linear gradients. Furthermore, an analytical expression was formulated to predict HIC retention for both linear and segmented linear gradients, considering the linear solvent-strength (LSS) model within ternary salt systems, relying on a fixed k0. The approach involved conducting two gradient scouting runs for each of the two binary salt systems to determine model parameters. Retention-time prediction errors for linear gradients were below 12 % for lysozyme and 3 % for trypsinogen and α-chymotrypsinogen A. Finally, the analytical expression for a ternary mobile-phase system was used in combination with a genetic algorithm to tune the HIC selectivity. With an optimized segmented ternary gradient, a critical-pair separation for a mixture of 7 proteins was achieved within 15 min with retention-time prediction errors ranging between 0.7 and 15.7 %.


Assuntos
Sulfato de Amônio , Interações Hidrofóbicas e Hidrofílicas , Muramidase , Muramidase/química , Muramidase/análise , Sulfato de Amônio/química , Cloreto de Sódio/química , Cromatografia Líquida/métodos , Algoritmos , Soluções Tampão , Fosfatos/química , Fosfatos/análise , Quimotripsinogênio/química , Modelos Químicos
2.
Anal Chem ; 96(3): 1121-1128, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190620

RESUMO

This study presents a comprehensive investigation of the mechanistic understanding of retention and selectivity in hydrophobic interaction chromatography. It provides valuable insights into crucial method-development parameters involved in achieving chromatographic resolution for profiling molecular variants of trastuzumab. Retention characteristics have been assessed for three column chemistries, i.e., butyl, alkylamide, and long-stranded multialkylamide ligands, while distinguishing column hydrophobicity and surface area. Salt type and specifically chloride ions proved to be the key driver for improving chromatographic selectivity, and this was attributed to the spatial distribution of ions at the protein surface, which is ion-specific. The effect was notably more pronounced on the multialkylamide column, as proteins intercalated between the multiamide polymer strands, enabling steric effects. Column coupling proved to be an effective approach for maximizing resolution between molecular variants present in the trastuzumab reference sample and trastuzumab variants induced by forced oxidation. Liquid chromatography-mass spectrometry (LC-MS)/MS peptide mapping experiments after fraction collection indicate that the presence of chloride in the mobile phase enables the selectivity of site-specific deamidation (N30) situated at the heavy chain. Moreover, site-specific oxidation of peptides (M255, W420, and M431) was observed for peptides situated at the Fc region close to the CH2-CH3 interface, previously reported to activate unfolding of trastuzumab, increasing the accessible surface area and hence resulting in an increase in chromatographic retention.


Assuntos
Anticorpos Monoclonais , Cloretos , Anticorpos Monoclonais/química , Cromatografia , Trastuzumab , Peptídeos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA