Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
ACS Nano ; 18(22): 13983-13999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767983

RESUMO

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.


Assuntos
Nanomedicina , Humanos , Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , Estados Unidos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38558290

RESUMO

Nanomedicine in oncology has not had the success in clinical impact that was anticipated in the early stages of the field's development. Ideally, nanomedicines selectively accumulate in tumor tissue and reduce systemic side effects compared to traditional chemotherapeutics. However, this has been more successful in preclinical animal models than in humans. The causes of this failure to translate may be related to the intra- and inter-patient heterogeneity of the tumor microenvironment. Predicting whether a patient will respond positively to treatment prior to its initiation, through evaluation of characteristics like nanoparticle extravasation and retention potential in the tumor, may be a way to improve nanomedicine success rate. While there are many potential strategies to accomplish this, prediction and patient stratification via noninvasive medical imaging may be the most efficient and specific strategy. There have been some preclinical and clinical advances in this area using MRI, CT, PET, and other modalities. An alternative approach that has not been studied as extensively is biomedical ultrasound, including techniques such as multiparametric contrast-enhanced ultrasound (mpCEUS), doppler, elastography, and super-resolution processing. Ultrasound is safe, inexpensive, noninvasive, and capable of imaging the entire tumor with high temporal and spatial resolution. In this work, we summarize the in vivo imaging tools that have been used to predict nanoparticle distribution and treatment efficacy in oncology. We emphasize ultrasound imaging and the recent developments in the field concerning CEUS. The successful implementation of an imaging strategy for prediction of nanoparticle accumulation in tumors could lead to increased clinical translation of nanomedicines, and subsequently, improved patient outcomes. This article is categorized under: Diagnostic Tools In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery Emerging Technologies.


Assuntos
Nanopartículas , Neoplasias , Animais , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ultrassonografia , Imageamento por Ressonância Magnética , Resultado do Tratamento , Nanopartículas/uso terapêutico , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
3.
Prostate ; 84(7): 682-693, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477025

RESUMO

BACKGROUND: There is an increasing interest in using preclinical models for development and assessment of medical devices and imaging techniques for prostatic disease care. Still, a comprehensive assessment of the prostate's radiological anatomy in primary preclinical models such as dogs, rabbits, and mice utilizing human anatomy as a reference point remains necessary with no optimal model for each purpose being clearly defined in the literature. Therefore, this study compares the anatomical characteristics of different animal models to the human prostatic gland from the imaging perspective. METHODS: We imaged five Beagle laboratory dogs, five New Zealand White rabbits, and five mice, all sexually mature males, under Institutional Animal Care and Use Committee (IACUC) approval. Ultrasonography (US) was performed using the Vevo® F2 for mice (57 MHz probe). Rabbits and dogs were imaged using the Siemens® Acuson S3000 (17 MHz probe) and endocavitary (8 MHz) probes, respectively. Magnetic resonance imaging (MRI) was also conducted with a 7T scanner in mice and 3T scanner in rabbits and dogs. RESULTS: Canine transrectal US emerged as the optimal method for US imaging, depicting a morphologically similar gland to humans but lacking echoic zonal differentiation. MRI findings in canines indicated a homogeneously structured gland similar to the human peripheral zone on T2-weighted images (T2W) and apparent diffusion coefficient (ADC). In rabbits, US imaging faced challenges due to the pubic symphysis, whereas MRI effectively visualized all structures with the prostate presenting a similar aspect to the human peripheral gland on T2W and ADC maps. Murine prostate assessment revealed poor visualization of the prostate glands in ultrasound due to its small size, while 7T MRI delineated the distinct prostates and its lobes, with the lateral and dorsal prostate resembling the peripheral zone and the anterior prostate the central zone of the human gland. CONCLUSION: Dogs stand out as superior models for advanced preclinical studies in prostatic disease research. However, mice present as a good model for early stage studies and rabbits are a cost-effective alternative and serve as valuable tools in specific research domains when canine research is not feasible.


Assuntos
Doenças Prostáticas , Neoplasias da Próstata , Masculino , Animais , Humanos , Cães , Coelhos , Camundongos , Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Doenças Prostáticas/diagnóstico por imagem , Modelos Teóricos
4.
IEEE Trans Med Imaging ; 43(6): 2370-2380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329864

RESUMO

Nanobubbles (NBs; ~100-500 nm diameter) are preclinical ultrasound (US) contrast agents that expand applications of contrast enhanced US (CEUS). Due to their sub-micron size, high particle density, and deformable shell, NBs in pathological states of heightened vascular permeability (e.g. in tumors) extravasate, enabling applications not possible with microbubbles (~1000-10,000 nm diameter). A method that can separate intravascular versus extravascular NB signal is needed as an imaging biomarker for improved tumor detection. We present a demonstration of decorrelation time (DT) mapping for enhanced tumor NB-CEUS imaging. In vitro models validated the sensitivity of DT to agent motion. Prostate cancer mouse models validated in vivo imaging potential and sensitivity to cancerous tissue. Our findings show that DT is inversely related to NB motion, offering enhanced detail of NB dynamics in tumors, and highlighting the heterogeneity of the tumor environment. Average DT was high in tumor regions (~9 s) compared to surrounding normal tissue (~1 s) with higher sensitivity to tumor tissue compared to other mapping techniques. Molecular NB targeting to tumors further extended DT (11 s) over non-targeted NBs (6 s), demonstrating sensitivity to NB adherence. From DT mapping of in vivo NB dynamics we demonstrate the heterogeneity of tumor tissue while quantifying extravascular NB kinetics and delineating intra-tumoral vasculature. This new NB-CEUS-based biomarker can be powerful in molecular US imaging, with improved sensitivity and specificity to diseased tissue and potential for use as an estimator of vascular permeability and the enhanced permeability and retention (EPR) effect in tumors.


Assuntos
Meios de Contraste , Neoplasias da Próstata , Ultrassonografia , Animais , Meios de Contraste/farmacocinética , Meios de Contraste/química , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Ultrassonografia/métodos , Masculino , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular Tumoral , Humanos , Microbolhas , Imagens de Fantasmas , Camundongos Nus , Nanopartículas/química
5.
Bioact Mater ; 35: 45-55, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304914

RESUMO

Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. Prior work demonstrates that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) results in enhanced cellular internalization and prolongs NB retention with persistent, cancer-cell specific acoustic activity. In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency unfocused therapeutic US (TUS) will lead to selective damage and induce a specific therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. We observed that the internalized NBs and cellular compartments were disrupted after the PSMA-NB + TUS (targeted NB therapy or TNT) application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.4 ± 9.3 %, p < 0.01) compared to controls. TNT treatment significantly inhibited the PSMA expressing tumor growth and increased median survival time by 103 %, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in an orthotopic rabbit PCa model. Results demonstrate that cavitation of PSMA-NBs internalized via receptor-mediated endocytosis into target PCa cells using unfocused ultrasound results in significant, tumor-specific bioeffects. The effects, while not lethal to PSMA-expressing cancer cells in vitro, result in significant in vivo reduction in tumor progression in two models of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.

6.
J Control Release ; 367: 135-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237687

RESUMO

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.


Assuntos
Neoplasias Hepáticas , Microbolhas , Ratos , Animais , Humanos , Distribuição Tecidual , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral
7.
Mol Imaging Biol ; 26(2): 253-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151581

RESUMO

PURPOSE: With about ten-fold smaller diameter than MBs, nanobubbles (NBs) were developed as new-generation ultrasound contrast agents (UCA) able to extravasate and target specific receptors expressed on extravascular cancer cells, such as the prostate-specific membrane antigen (PSMA). It has been shown that PSMA-targeted NBs (PSMA-NBs) can bind to specific prostate cancer (PCa) cells and exhibit a prolonged retention effect (PRE), observable by NB-based CEUS (NB-CEUS). However, previous analyses of PRE were mainly limited to the semi-quantitative assessment of the time-intensity curve (TIC) in an entire tumor ROI, possibly losing information on tumor spatial heterogeneity and local characteristics. When analyzing the pixel-level TICs of free NB-based CEUS, we observed a unique second-wave phenomenon: The first pass of the NB wave (bolus) is usually accompanied by a second wave in the time range of 3 to 15 min after the bolus injection. Such a phenomenon was shown to be potentially valuable in supporting the diagnostics of cancerous lesions. PROCEDURES: Seven male athymic nude mice were included and implanted with a tumor expressing PSMA (PSMA+) and tumors not expressing PSMA (PSMA-) on two flanks. Using either free NBs or PSMA-NBs, the characteristics of pixel-level TICs were estimated by a specialized model accounting for the two-wave phenomenon, compared with a conventional model describing only one wave. The estimated parameters by the two models were presented as parametric maps to visualize the PRE of PSMA-NBs in a dual-tumor mouse model. The effectiveness of the two models were also assessed by comparing the estimated parameters in the PSMA+ and PSMA- tumors through Mann-Whitney U test and quartile difference. RESULTS: Two parameters, the peak time and residual factor of the second wave, by the second-wave model were significantly different between PSMA+ and PSMA- tumors when using PSMA-NBs. Compared with the TICs of free NBs, TICs of PSMA-NBs present higher peak intensity and a more delayed second wave, especially in the PSMA+ tumor. CONCLUSIONS: The estimation of parametric maps allows the estimation and visualization of specific binding of PSMA-NBs in PCa. The incorporation of the second-wave phenomenon enrich our understanding of NB kinetics in vivo and can possibly contribute to improved diagnostics of PCa in the future.


Assuntos
Meios de Contraste , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Camundongos Nus , Ultrassonografia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral
8.
ACS Nano ; 18(1): 410-427, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147452

RESUMO

Focused ultrasound-stimulated microbubbles can induce blood flow shutdown and ischemic necrosis at higher pressures in an approach termed antivascular ultrasound. Combined with conventional therapies of chemotherapy, immunotherapy, and radiation therapy, this approach has demonstrated tumor growth inhibition and profound synergistic antitumor effects. However, the lower cavitation threshold of microbubbles can potentially yield off-target damage that the polydispersity of clinical agent may further exacerbate. Here we investigate the use of a monodisperse nanodroplet formulation for achieving antivascular effects in tumors. We first develop stable low boiling point monodisperse lipid nanodroplets and examine them as an alternative agent to mediate antivascular ultrasound. With synchronous intravital imaging and ultrasound monitoring of focused ultrasound-stimulated nanodroplets in tumor microvasculature, we show that nanodroplets can trigger blood flow shutdown and do so with a sharper pressure threshold and with fewer additional events than conventionally used microbubbles. We further leverage the smaller size and prolonged pharmacokinetic profile of nanodroplets to allow for potential passive accumulation in tumor tissue prior to antivascular ultrasound, which may be a means by which to promote selective tumor targeting. We find that vascular shutdown is accompanied by inertial cavitation and complex-order sub- and ultraharmonic acoustic signatures, presenting an opportunity for effective feedback control of antivascular ultrasound.


Assuntos
Neoplasias , Humanos , Ultrassonografia , Acústica , Microvasos/diagnóstico por imagem , Microscopia Intravital , Microbolhas
9.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045236

RESUMO

The tumor microenvironment is characterized by dysfunctional endothelial cells, resulting in heightened vascular permeability. Many nanoparticle-based drug delivery systems attempt to use this enhanced permeability combined with impaired lymphatic drainage (a concept known as the 'enhanced permeability and retention effect' or EPR effect) as the primary strategy for drug delivery, but this has not proven to be as clinically effective as anticipated. The specific mechanisms behind the inconsistent clinical outcomes of nanotherapeutics have not been clearly articulated, and the field has been hampered by a lack of accessible tools to study EPR-associated phenomena in clinically relevant scenarios. While medical imaging has tremendous potential to contribute to this area, it has not been broadly explored. This work examines, for the first time, the use of multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a novel nanoscale contrast agent to examine tumor microenvironment characteristics noninvasively and in real-time. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features and (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability, and time-intensity curve (TIC) parameters were evaluated in both models prior to injection of doxorubicin liposomes. Consistently, LS174T tumors showed significantly different TIC parameters, including area under the rising curve (2.7x), time to peak intensity (1.9x) and decorrelation time (DT, 1.9x) compared to U87 tumors. Importantly, the DT parameter successfully predicted tumoral nanoparticle distribution (r = 0.86 ± 0.13). Ultimately, substantial differences in NB-CEUS generated parameters between LS174T and U87 tumors suggest that this method may be useful in determining tumor vascular permeability and could be used as a biomarker for identifying tumor characteristics and predicting sensitivity to nanoparticle-based therapies. These findings could ultimately be applied to predicting treatment efficacy and to evaluating EPR in other diseases with pathologically permeable vasculature.

10.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732235

RESUMO

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.

11.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745586

RESUMO

Rationale: Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. We have previously shown that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) enhances the cellular internalization and prolongs retention of NBs with persistent acoustic activity (~hrs.). In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency therapeutic US (TUS) will lead to selective damage and induce a therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. Methods: PSMA-targeted NBs were formulated by following our previously established protocol. Cellular internalization of fluorescent PSMA-NBs was evaluated by confocal imaging using late endosome/lysosome staining pre- and post-TUS application. Two animal models were used to assess the technique. Mice with dual tumors (PSMA expressing and PSMA negative) received PSMA-NB injection via the tail vein followed by TUS 1 hr. post injection (termed, targeted NB therapy or TNT). Twenty-four hours after treatment mice were euthanized and tumor cell apoptosis evaluated via TUNEL staining. Mice with single tumors (either PSMA + or -) were used for survival studies. Tumor size was measured for 80 days after four consecutive TNT treatments (every 3 days). To test the approach in a larger model, immunosuppressed rabbits with orthotopic human PSMA expressing tumors received PSMA-NB injection via the tail vein followed by TUS 30 min after injection. Tumor progression was assessed via US imaging and at the end point apoptosis was measured via TUNEL staining. Results: In vitro TNT studies using confocal microscopy showed that the internalized NBs and cellular compartments were disrupted after the TUS application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.45 ± 9.3%, p < 0.01) compared to the other groups. TNT treatment significantly inhibited the PSMA (+) tumor growth and overall survival significantly improved (median survival time increase by 103%, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in the rabbit model in intraprostatic (90%) and in extraprostatic lesions (94%) (p = 0.069 and 0.003, respectively). Conclusion: We demonstrate for the first time the effect of PSMA-targeted nanobubble intracellular cavitation on cancer cell viability and tumor progression in two animal models. Data demonstrate that the targeted nanobubble therapy (TNT) approach relies primarily on mechanical disruption of intracellular vesicles and the resulting bioeffects appear to be more specific to target cancer cells expressing the PSMA receptor. The effect, while not lethal in vitro, resulted in significant tumor apoptosis in vivo in both a mouse and a rabbit model of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.

12.
Lab Chip ; 23(15): 3453-3466, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37424286

RESUMO

Lipid shell-stabilized nanoparticles with a perfluorocarbon gas-core, or nanobubbles, have recently attracted attention as a new contrast agent for molecular ultrasound imaging and image-guided therapy. Due to their small size (∼275 nm diameter) and flexible shell, nanobubbles have been shown to extravasate through hyperpermeable vasculature (e.g., in tumors). However, little is known about the dynamics and depth of extravasation of intact, acoustically active nanobubbles. Accordingly, in this work, we developed a microfluidic chip with a lumen and extracellular matrix (ECM) and imaging method that allows real-time imaging and characterization of the extravasation process with high-frequency ultrasound. The microfluidic device has a lumen and is surrounded by an extracellular matrix with tunable porosity. The combination of ultrasound imaging and the microfluidic chip advantageously produces real-time images of the entire length and depth of the matrix. This captures the matrix heterogeneity, offering advantages over other imaging techniques with smaller fields of view. Results from this study show that nanobubbles diffuse through a 1.3 µm pore size (2 mg mL-1) collagen I matrix 25× faster with a penetration depth that was 0.19 mm deeper than a 3.7 µm (4 mg mL-1) matrix. In the 3.7 µm pore size matrix, nanobubbles diffused 92× faster than large nanobubbles (∼875 nm diameter). Decorrelation time analysis was successfully used to differentiate flowing and extra-luminally diffusing nanobubbles. In this work, we show for the first time that combination of an ultrasound-capable microfluidic chip and real-time imaging provided valuable insight into spatiotemporal nanoparticle movement through a heterogeneous extracellular matrix. This work could help accurately predict parameters (e.g., injection dosage) that improve translation of nanoparticles from in vitro to in vivo environments.


Assuntos
Meios de Contraste , Neoplasias , Humanos , Microfluídica , Ultrassonografia/métodos , Matriz Extracelular , Microbolhas
13.
Bioact Mater ; 19: 642-652, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35600972

RESUMO

Nanoscale ultrasound contrast agents, or nanobubbles, are being explored in preclinical applications ranging from vascular and cardiac imaging to targeted drug delivery in cancer. These sub-micron particles are approximately 10x smaller than clinically available microbubbles. This allows them to effectively traverse compromised physiological barriers and circulate for extended periods of time. While various aspects of nanobubble behavior have been previously examined, their behavior in human whole blood has not yet been explored. Accordingly, herein we examined, for the first time, the short and long-term effects of blood components on nanobubble acoustic response. We observed differences in the kinetics of backscatter from nanobubble suspensions in whole blood compared to bubbles in phosphate buffered saline (PBS), plasma, or red blood cell solutions (RBCs). Specifically, after introducing nanobubbles to fresh human whole blood, signal enhancement, or the magnitude of nonlinear ultrasound signal, gradually increased by 22.8 ± 13.1% throughout our experiment, with peak intensity reached within 145 s. In contrast, nanobubbles in PBS had a stable signal with negligible change in intensity (-1.7 ± 3.2%) over 8 min. Under the same conditions, microbubbles made with the same lipid formulation showed a -56.8 ± 6.1% decrease in enhancement in whole blood. Subsequent confocal, fluorescent, and scanning electron microscopy analysis revealed attachment of the nanobubbles to the surface of RBCs, suggesting that direct interactions, or hitchhiking, of nanobubbles on RBCs in the presence of plasma may be a possible mechanism for the observed effects. This phenomenon could be key to extending nanobubble circulation time and has broad implications in drug delivery, where RBC interaction with nanoparticles could be exploited to improve delivery efficiency.

14.
IEEE Trans Biomed Eng ; 70(1): 42-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714094

RESUMO

With a typical 100-500 nm diameter, nanobubbles are a promising new-generation ultrasound contrast agent that paves ways for several applications, such as efficient drug delivery, molecular imaging, and assessment of vascular permeability. Due to their unique physical properties, nanobubbles exhibit distinct in vivo pharmacokinetics. We have shown that the first pass of the nanobubble bolus is usually accompanied by the appearance of a second bolus (wave) within a time range of about 15 minutes. Such phenomenon, to the best of our knowledge, has never been observed with conventional microbubbles and smaller molecular contrast agents used in MRI and CT. In a previous study, we showed the potential of this phenomenon in supporting cancer diagnosis. This study focuses on developing a new compartmental pharmacokinetic model that can be used to interpret the second-wave phenomenon. With this model, we can analyze more in-depth the roles of several physiological factors affecting the characteristics of the second-wave phenomenon.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos , Ultrassonografia/métodos , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Microbolhas
15.
Nanoscale ; 14(37): 13614-13627, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36070492

RESUMO

Scaling down the size of microbubble contrast agents to the nanometer level holds the promise for noninvasive cancer therapy. However, the small size of nanobubbles limits the obtained bioeffects as a result of ultrasound cavitation, when operating near the nanobubble resonance frequency. Here we show that coupled with low energy insonation at a frequency of 80 kHz, well below the resonance frequency of these agents, nanobubbles serve as noninvasive therapeutic warheads that trigger potent mechanical effects in tumors following a systemic injection. We demonstrate these capabilities in tissue mimicking phantoms, where a comparison of the acoustic response of micro- and nano-bubbles after insonation at a frequency of 250 or 80 kHz revealed that higher pressures were needed to implode the nanobubbles compared to microbubbles. Complete nanobubble destruction was achieved at a mechanical index of 2.6 for the 250 kHz insonation vs. 1.2 for the 80 kHz frequency. Thus, the 80 kHz insonation complies with safety regulations that recommend operation below a mechanical index of 1.9. In vitro in breast cancer tumor cells, the cell viability was reduced to 17.3 ± 1.7% of live cells. In vivo, in a breast cancer tumor mouse model, nanobubble tumor distribution and accumulation were evaluated by high frequency ultrasound imaging. Finally, nanobubble-mediated low frequency insonation of breast cancer tumors resulted in effective mechanical tumor ablation and tumor tissue fractionation. This approach provides a unique theranostic platform for safe, noninvasive and low energy tumor mechanotherapy.


Assuntos
Meios de Contraste , Neoplasias , Animais , Meios de Contraste/farmacologia , Camundongos , Microbolhas , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagens de Fantasmas , Ultrassonografia/métodos
16.
Med Phys ; 49(10): 6547-6559, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049109

RESUMO

PURPOSE: Contrast-enhanced ultrasound (CEUS) by injection of microbubbles (MBs) has shown promise as a cost-effective imaging modality for prostate cancer (PCa) detection. More recently, nanobubbles (NBs) have been proposed as novel ultrasound contrast agents. Unlike MBs, which are intravascular ultrasound contrast agents, the smaller diameter of NBs allows them to cross the vessel wall and target specific receptors on cancer cells such as the prostate-specific membrane antigen (PSMA). It has been demonstrated that PSMA-targeted NBs can bind to the receptors of PCa cells and show a prolonged retention effect in dual-tumor mice models. However, the analysis of the prolonged retention effect has so far been limited to qualitative or semi-quantitative approaches. METHODS: This work introduces two pharmacokinetics models for quantitative analysis of time-intensity curves (TICs) obtained from the CEUS loops. The first model is based on describing the vascular input by the modified local density random walk (mLDRW) model and independently interprets TICs from each tumor lesion. Differently, the second model is based on the reference-tissue model, previously proposed in the context of nuclear imaging, and describes the binding kinetics of an indicator in a target tissue by using a reference tissue where binding does not occur. RESULTS: Our results show that four estimated parameters, ß, ß / λ $\beta /\lambda $ , ß + / ß - ${\beta }_ + /{\beta }_ - $ , for the mLDRW-input model, and γ for the reference-based model, were significantly different (p-value <0.05) between free NBs and PSMA-NBs. These parameters estimated by the two models demonstrate different behaviors between PSMA-targeted and free NBs. CONCLUSIONS: These promising results encourage further quantitative analysis of targeted NBs for improved cancer diagnostics and characterization.


Assuntos
Meios de Contraste , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Humanos , Masculino , Camundongos , Microbolhas , Neoplasias da Próstata/metabolismo , Ultrassonografia/métodos
17.
Sci Rep ; 12(1): 13619, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948582

RESUMO

Investigation of nanobubble (NB) pharmacokinetics in contrast-enhanced ultrasound (CEUS) at the pixel level shows a unique phenomenon where the first pass of the contrast agent bolus is accompanied by a second wave. This effect has not been previously observed in CEUS with microbubbles. The objective of this study was to investigate this second-wave phenomenon and its potential clinical applications. Seven mice with a total of fourteen subcutaneously-implanted tumors were included in the experiments. After injecting a bolus of NBs, the NB-CEUS images were acquired to record the time-intensity curves (TICs) at each pixel. These TICs are fitted to a pharmacokinetic model which we designed to describe the observed second-wave phenomenon. The estimated model parameters are presented as parametric maps to visualize the characteristics of tumor lesions. Histological analysis was also conducted in one mouse to compare the molecular features of tumor tissue with the obtained parametric maps. The second-wave phenomenon is evidently shown in a series of pixel-based TICs extracted from either tumor or tissues. The value of two model parameters, the ratio of the peak intensities of the second over the first wave, and the decay rate of the wash-out process present large differences between malignant tumor and normal tissue (0.04 < Jessen-Shannon divergence < 0.08). The occurrence of a second wave is a unique phenomenon that we have observed in NB-CEUS imaging of both mouse tumor and tissue. As the characteristics of the second wave are different between tumor and tissue, this phenomenon has the potential to support the diagnosis of cancerous lesions.


Assuntos
Microbolhas , Neoplasias , Animais , Meios de Contraste/farmacocinética , Diagnóstico por Imagem , Camundongos , Neoplasias/diagnóstico por imagem , Ultrassonografia/métodos
18.
Nat Commun ; 13(1): 4455, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941109

RESUMO

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (Mtb) and is a major cause of morbidity and mortality. Successful treatment requires strict adherence to drug regimens for prolonged periods of time. Long-acting (LA) delivery systems have the potential to improve adherence. Here, we show the development of LA injectable drug formulations of the anti-TB drug rifabutin made of biodegradable polymers and biocompatible solvents that solidifies after subcutaneous injection. Addition of amphiphilic compounds increases drug solubility, allowing to significantly increase formulation drug load. Solidified implants have organized microstructures that change with formulation composition. Higher drug load results in smaller pore size that alters implant erosion and allows sustained drug release. The translational relevance of these observations in BALB/c mice is demonstrated by (1) delivering high plasma drug concentrations for 16 weeks, (2) preventing acquisition of Mtb infection, and (3) clearing acute Mtb infection from the lung and other tissues.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Camundongos , Rifabutina/farmacologia , Rifabutina/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose/prevenção & controle
20.
Cancers (Basel) ; 14(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35884520

RESUMO

BACKGROUND: Tumor-positive surgical margins during primary breast cancer (BCa) surgery are associated with a two-fold increase in the risk of local recurrence when compared with tumor-negative margins. Pathological microscopic evaluation of the samples only assesses about 1/10 of 1% of the entire volume of the removed BCa specimens, leading to margin under-sampling and potential local recurrence in patients with pathologically clean margins, i.e., false negative margins. In the case of tumor-positive margins, patients need to undergo re-excision and/or radiation therapy, resulting in increases in complications, morbidity, and healthcare costs. Development of a simple real-time imaging technique to identify residual BCa in the surgical cavity rapidly and precisely could significantly improve the quality of care. METHODS: A small-molecule, fluorescently quenched protease-substrate probe, AKRO-QC-ICG, was tested as part of a thermosensitive imaging gel formulated for topical application and imaging of the BCa surgical cavity. RESULTS: More than forty formulations of gel mixtures were investigated to enable easy fluid application and subsequent solidification once applied, preventing dripping and pooling in the surgical cavity. The final formulation was tested using human BCa orthotopic implants in nude and NSG patient-derived xenografts (PDX) mice. This formulation of Pluronic F-127/DMSO/AKRO-QC-ICG imaging gel was found to be a good solvent for the probe, with a desirable thermo-reversible solid-gel transition and mechanical strength for distribution of AKRO-QC-ICG on the surfaces of tissue. It demonstrated excellent ability to detect BCa tissue after 10 min exposure, with a high signal-to-noise ratio both in mouse xenografts and freshly excised human lumpectomy tissue. The in vivo efficacy of the AKRO-QC-ICG imaging gel to detect BCa revealed the levels of sensitivity/specificity = 0.92/1 in 12 nude mice, which was corroborated with the sensitivity/specificity = 0.94/1 in 10 PDX mice. CONCLUSIONS: Utilization of Pluronic F-127/DMSO/AKRO-QC-ICG imaging gel for topical application to detect BCa in the surgical cavity during surgery has the potential to reduce re-excisions, with consequent savings in healthcare costs and enhancement in patient quality of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA