Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
2.
Front Pharmacol ; 15: 1358549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440181

RESUMO

Background: Tramadol is primarily metabolized by the highly polymorphic CYP2D6 enzyme, leading to a large spectrum of adverse events and clinical response. Ample evidence pointed a reduced CYPD26 activity score in individuals harboring the CYP2D6*10/*10 genotype, nevertheless, there is scarce studies on the impact of CYP2D6*10/*10 genetic polymorphism on long-term tramadol's adverse effects. Aim: To test the correlation between CYP2D6*10/*10 expression and the risk for tramadol-associated adverse effects. Method: Using a database of Leumit Healthcare Services in Israel, we retrospectively assessed the occurrence of adverse events in patients who were prescribed tramadol. A binary logistic regression model was applied to model the relationship between CYP2D6*10/*10 genotype and the occurrence of adverse effects. Results: Data from four hundred ninety-three patients were included in this study. Only 25 (5.1%) patients were heterozygous for the CYP2D6*10 variant, while 56 patients (11%) were tested positive to the CYP2D6*10/*10 genotype. Compared to carriers of other variants, patients with the CYP2D6*10/*10 variant exhibited a higher occurrence of adverse events (odds ratio [OR] = 6.14, 95% confidence interval 3.18-11.83); the odds ratio for central nervous system adverse events and gastrointestinal adverse events were 5.13 (95% CI 2.84-9.28), and 3.25 (95% CI 1.78-5.93), respectively. Conclusion: Among the different CYP2D6 genotypes, CYP2D6*10/*10 genotype carries the higher risk of tramadol related adverse events. Appreciating the frequency of this specific allele it seems prudent to pharmacogenetically screen patients considered for long term tramadol treatment for better tolerability and efficacy outcomes.

3.
ACS Omega ; 9(6): 6965-6975, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371846

RESUMO

Our goal was to test the feasibility of a new theranostic strategy in chronic epilepsy by targeting cathepsin function using novel cathepsin activity-based probes (ABPs). We assessed the biodistribution of fluorescent cathepsin ABPs in vivo, in vitro, and ex vivo, in rodents with pilocarpine-induced chronic epilepsy and naïve controls, in human epileptic tissue, and in the myeloid cell lines RAW 264.7 (monocytes) and BV2 (microglia). Distribution and localization of ABPs were studied by fluorescence scanning, immunoblotting, microscopy, and cross-section staining in anesthetized animals, in their harvested organs, in brain tissue slices, and in vitro. Blood-brain-barrier (BBB) efflux transport was evaluated in transporter-overexpressing MDCK cells and using an ATPase activation assay. Although the in vivo biodistribution of ABPs to both naïve and epileptic hippocampi was negligible, ex vivo ABPs bound cathepsins preferentially within epileptogenic brain tissue and colocalized with neuronal but not myeloid cell markers. Thus, our cathepsin ABPs are less likely to be of major clinical value in the diagnosis of chronic epilepsy, but they may prove to be of value in intraoperative settings and in CNS conditions with leakier BBB or higher cathepsin activity, such as status epilepticus.

4.
Epilepsia ; 65(1): 127-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37597251

RESUMO

OBJECTIVE: The management of patients after a first unprovoked seizure (FUS) can benefit from stratification of the average 50% risk for further seizures. We characterized subjects with FUSs, out of a large generally healthy homogenous population of soldiers recruited by law to the Israeli Defense Forces, to investigate the role of the type of service, as a trigger burden surrogate, in the risk for additional seizures. METHODS: Soldiers recruited between 2005 and 2014, who experienced an FUS during their service, were identified from military records. Subjects with a history of epilepsy or lack of documentation of FUS characteristics were excluded from the study. Data on demographics and military service and medical details were extracted for the eligible soldiers. RESULTS: Of 816 252 newly recruited soldiers, representing 2 138 000 person-years, 346 had an FUS, indicating an incidence rate of 16.2 per 100 000 person-years. The FUS incidence rate was higher in combat versus noncombat male and female soldiers (p < .0001). Most subjects (75.7%) were prescribed antiseizure medications (ASMs), and 29.2% had additional seizures after the FUS. Service in combat units, abnormal magnetic resonance imaging, and being prescribed ASMs were correlated with a lower risk of having multiple seizures (95% confidence interval [CI] = .48-.97, .09-.86, .15-.28, respectively). On multivariate analysis, service in combat units (odds ratio [OR] = .48 for seizure recurrence, 95% CI = .26-.88) and taking medications (OR = .46, 95% CI = .24-.9) independently predicted not having additional seizures. SIGNIFICANCE: FUS incidence rate was higher in combat soldiers, but they had a twofold lower risk of additional seizures than noncombat soldiers, emphasizing the value of strenuous triggers as negative predictors for developing epilepsy. This suggests a shift in the perception of epilepsy from a "yes or no" condition to a continuous trend of predisposition to seizures, warranting changes in the ways etiologies of epilepsy are weighted and treatments are delivered.


Assuntos
Epilepsia , Militares , Humanos , Masculino , Feminino , Israel/epidemiologia , Epilepsia/epidemiologia , Convulsões/epidemiologia , Incidência
5.
Epilepsia ; 65(2): 445-455, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010146

RESUMO

OBJECTIVE: Antiseizure medications (ASMs) are commonly categorized as enzyme-inducers and non-enzyme-inducers based on their propensity to enhance the metabolism of concomitantly administered drugs. This systematic review and network meta-analysis aimed to rank ASMs as cytochrome P450 3A (CYP3A)-inducers based on a comparative assessment of ASM-induced reduction in the concentrations of sensitive substrate drugs. METHODS: The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews; CRD42022335846), and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) standards were followed. We searched MEDLINE, Embase, and Cochrane until March 14, 2023 without an initial date restriction. Data were additionally obtained via the US Food and Drug Administration database. Studies had to be prospective, with ASM monotherapy for ≥5 days. The primary parameter was the magnitude of change in the area under the concentration-time curve of CYP3A substrates following treatment with the ASM. The standardized mean difference (SMD) was used as the point estimate for the indirect comparisons between ASMs using the pairwise method. Bias risk was assessed using the PKclin tool. RESULTS: We identified 14 open-label, fixed-sequence studies with 370 participants. The effect size of 600 mg/day carbamazepine did not differ from those of 300 mg/day phenytoin (SMD = -.06, 95% confidence interval [CI] = -.18 to .07) and 200 mg/day cenobamate (SMD = -.11, 95% CI = -.26 to .04). Carbamazepine at 600 mg/day was the strongest CYP3A-inducer (P-score = .88), followed by carbamazepine 400 mg/day (.83), phenytoin 300 mg/day (.79), and cenobamate 200 mg/day (.73). Eslicarbazepine (800 mg/day) ranked higher than cenobamate 100 mg/day and oxcarbazepine 900 mg/day (.60, .39, and .37, respectively). SIGNIFICANCE: Despite the limited number of studies, our network meta-analysis emphasizes that the magnitude of ASM effects on CYP3A substrate metabolism is a dose-dependent continuum. When possible, ASM classification as inducers should apply cutoff values tailored to the outcome. Prescribers should monitor plasma concentrations or clinical effects of CYP3A substrates and consider selecting concomitant medications accordingly.


Assuntos
Carbamatos , Clorofenóis , Citocromo P-450 CYP3A , Fenitoína , Tetrazóis , Humanos , Fenitoína/uso terapêutico , Metanálise em Rede , Preparações Farmacêuticas/metabolismo , Carbamazepina/uso terapêutico , Benzodiazepinas
6.
Front Cell Dev Biol ; 11: 1217149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954205

RESUMO

We recently demonstrated that the histone deacetylase inhibitor valproic acid (VPA) reprograms the cisplatin-induced metabolome of triple-negative breast cancer (TNBC) cells, including a shift in hexose levels. Accordingly, here, we tested the hypothesis that VPA alters glucose metabolism in correlation with cisplatin sensitivity. Two TNBC cell lines, MDA-MB-231 (a cisplatin-resistant line) and MDA-MB-436 (a cisplatin-sensitive line), were analyzed. The glycolysis and oxidative metabolism were measured using the Glycolysis Stress Test kit. The expression of aldehyde dehydrogenases (ALDHs), enzymes linked to drug resistance, was investigated by Western blot and real-time PCR analyses. We additionally studied the influence of ALDH inhibition by disulfiram on the viability of MDA-MB-231 cells and on a TNBC patient-derived organoid system. Cisplatin treatment reduced the extracellular acidification rate in MDA-MB-436 cells but not MDA-MB-231 cells, whereas VPA addition increased the extracellular acidification rate in both cell lines. VPA further reduced the oxygen consumption rate of cisplatin-treated MDA-MB-436 cells, which correlated with cell cycle alterations. However, in MDA-MB-231 cells, the cell cycle distribution did not change between cisplatin/VPA-cisplatin treatments. In both cell lines, VPA increased the expression of ALDH isoform and ALDH1A1 expression. However, only in MDA-MB-231 cells, VPA synergized with cisplatin to augment this effect. Disulfiram sensitized the cells to the cytotoxic effects of the VPA-cisplatin combination. Furthermore, the disulfiram-VPA-chemotherapy combination was most effective in TNBC organoids. Our results show that ALDH overexpression may act as one mechanism of cellular resistance to VPA in TNBC and that its inhibition may enhance the therapeutic efficacy of VPA-chemotherapeutic drug combinations.

7.
Epilepsy Curr ; 23(5): 306-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901775
8.
Epilepsia ; 64(12): 3354-3364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777821

RESUMO

OBJECTIVE: In the absence of safety data in humans, the use of cannabidiol (CBD) is not recommended during pregnancy. Yet >50% of pregnancies in women with epilepsy are unintended, making fetal exposure to CBD possible. As a small-molecule, highly lipid-soluble drug, CBD is likely to be distributed into the placenta and cross it. To estimate the placental distribution profile of CBD and its potential short-term placental effects, we conducted an ex vivo perfusion study in human placentas. METHODS: Placentas were obtained from healthy women undergoing cesarean deliveries. Selected cotyledons were cannulated and perfused for 180 min with a CBD-containing medium (250 ng/mL, .796 µmol·L-1 ; representative of a low therapeutic concentration; n = 8). CBD concentrations were determined at 180 min in the medium and placental tissue using liquid chromatography-tandem mass spectrometry. A customized gene panel array was used to analyze the expression of selected genes in the perfused placental cotyledons as well as in placentas perfused with 1000 ng/mL CBD (3.18 µmol·L-1 ; high therapeutic concentration; n = 8) and in those exposed to the vehicle. RESULTS: CBD was sequestered in the placental tissue, exhibiting significant variability across samples (median = 5342 ng/g tissue, range = 1066-9351 ng/g tissue). CBD concentrations in the fetal compartment were one fifth of those measured in the maternal compartment (median = 59 ng/mL, range = 48-72 ng/mL vs. 280 = ng/mL, range = 159-388 ng/mL, respectively; p < .01). Placental gene expression was not significantly altered by CBD. SIGNIFICANCE: The placenta acts as a depot compartment for CBD, slowing down its distribution to the fetus. This phenomenon might yield flatter but prolonged fetal CBD levels in vivo. The attenuated transplacental CBD transfer does not imply that its use by pregnant women is safe for the fetus. Only pregnancy registries and neurocognitive assessments would establish the risk of being antenatally exposed to CBD.


Assuntos
Canabidiol , Placenta , Gravidez , Feminino , Humanos , Troca Materno-Fetal , Canabidiol/farmacologia , Perfusão , Feto/metabolismo
11.
Epileptic Disord ; 25(4): 454-471, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37259844

RESUMO

Antiseizure medications (ASMs) are the cornerstone of treatment for patients with epilepsy. Several new ASMs have recently been introduced to the market, making it possible to better tailor the treatment of epilepsy, as well as other indications (psychiatry and pain disorders). For this group of drugs there are numerous pharmacological challenges, and updated knowledge on their pharmacodynamic and pharmacokinetic properties is, therefore, crucial for an optimal treatment outcome. This review focuses on educational approaches to the following learning outcomes as described by the International League Against Epilepsy (ILAE): To demonstrate knowledge of pharmacokinetics and pharmacodynamics, drug interactions with ASMs and with concomitant medications, and appropriate monitoring of ASM serum levels (therapeutic drug monitoring, TDM). Basic principles in pharmacology, pharmacokinetic variability, and clinically relevant approaches to manage drug interactions are discussed. Furthermore, recent improvements in analytical technology and sampling are described. Future directions point to the combined implementation of TDM with genetic panels for proper diagnosis, pharmacogenetic tests where relevant, and the use of biochemical markers that will all contribute to personalized treatment. These approaches are clinically relevant for an optimal treatment outcome with ASMs in various patient groups.


Assuntos
Anticonvulsivantes , Epilepsia , Humanos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Monitoramento de Medicamentos , Epilepsia/tratamento farmacológico , Interações Medicamentosas
12.
Epilepsia ; 64(7): 1750-1765, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086103

RESUMO

Intracerebroventricular (ICV) administration is increasingly being explored as a means for delivering antiseizure and antiepileptic therapies to epileptic brain tissue. This route bypasses the blood-brain barrier, thus enabling the delivery of therapeutics that are restricted from the brain, while reducing the risk of systemic adverse reactions. Nevertheless, projections from studies in patients with other diseases suggest that efficacy of some ICV-delivered therapeutics may be limited when the epileptogenic tissue or network circuits are localized more than a few millimeters away from the ventricles. In this article, we present the characteristics of the cerebrospinal fluid as a drug administration site, the brain barriers, and their relevance to treating focal and generalized epilepsies. We refer to ICV delivery of advanced therapies for treating neurodevelopmental disorders with epilepsy. We describe properties of therapeutic compounds, from small molecules to RNA-based therapeutics, proteins, and viral vectors, which can make them either fitting or poor candidates for ICV administration in epilepsy. We additionally provide an overview of preclinical studies and clinical trials involving the ICV route of delivery. Finally, we compare ICV delivery with other routes of administration that bypass the cerebral circulation. This review aims to provide information that will hopefully help investigators select candidate patients and therapeutics for ICV therapies, and to highlight advantages and challenges inherent to this approach.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Barreira Hematoencefálica/metabolismo , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas/metabolismo
13.
Seizure ; 106: 68-75, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774776

RESUMO

The release of the 2021 Intergovernmental Panel on Climate Change (IPCC) report makes clear that human activities have resulted in significant alterations in global climate. There is no doubt that climate change is upon us; chronic global warming has been punctuated by more frequent extreme weather events. Humanity will have to mitigate climate change and adapt to these changing conditions or face dire consequences. One under-appreciated aspect of this global crisis is its impact on healthcare, particularly people with epilepsy and temperature-sensitive seizures. As members of the inaugural International League Against Epilepsy (ILAE) Climate Change Commission, we recount the personal motivations that have led each team member to decide to take action, in the hope that our journeys as ordinary clinicians and scientists will help persuade others that they too can act to foster change within their spheres of influence.


Assuntos
Mudança Climática , Epilepsia , Humanos , Epilepsia/terapia , Convulsões
15.
Front Cell Dev Biol ; 10: 1014798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544904

RESUMO

Cisplatin is an effective chemotherapeutic agent for treating triple negative breast cancer (TNBC). Nevertheless, cisplatin-resistance might develop during the course of treatment, allegedly by metabolic reprograming, which might influence epigenetic regulation. We hypothesized that the histone deacetylase inhibitor (HDACi) valproic acid (VPA) can counter the cisplatin-induced metabolic changes leading to its resistance. We performed targeted metabolomic and real time PCR analyses on MDA-MB-231 TNBC cells treated with cisplatin, VPA or their combination. 22 (88%) out of the 25 metabolites most significantly modified by the treatments, were acylcarnitines (AC) and three (12%) were phosphatidylcholines (PCs). The most discernible effects were up-modulation of AC by cisplatin and, contrarily, their down-modulation by VPA, which was partial in the VPA-cisplatin combination. Furthermore, the VPA-cisplatin combination increased PCs, sphingomyelins (SM) and hexose levels, as compared to the other treatments. These changes predicted modulation of different metabolic pathways, notably fatty acid degradation, by VPA. Lastly, we also show that the VPA-cisplatin combination increased mRNA levels of the fatty acid oxidation (FAO) promoting enzymes acyl-CoA synthetase long chain family member 1 (ACSL1) and decreased mRNA levels of fatty acid synthase (FASN), which is the rate limiting enzyme of long-chain fatty acid synthesis. In conclusion, VPA supplementation altered lipid metabolism, especially fatty acid oxidation and lipid synthesis, in cisplatin-treated MDA-MB-231 TNBC cells. This metabolic reprogramming might reduce cisplatin resistance. This finding may lead to the discovery of new therapeutic targets, which might reduce side effects and counter drug tolerance in TNBC patients.

17.
Epilepsia ; 63(11): 2949-2957, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056753

RESUMO

OBJECTIVE: Lacosamide is increasingly being prescribed to pregnant women, although its effects on the developing fetus have not been fully clarified yet. Previously, we have shown that several antiseizure medications, particularly valproate, can affect the expression of carriers of essential compounds in placental cells. Here, our aim was to assess the effect of short ex vivo exposure of human placentas to lacosamide on the expression of carriers of essential nutrients required by the human fetus. METHODS: Placentas were obtained from cesarean deliveries of women with no known epilepsy. Cotyledons were cannulated and perfused over 180 min in the presence of lacosamide at 2.5 µg/ml (10 µmol·L-1 , n = 7) or 10 µg/ml (40 µmol·L-1 , n = 6), representing low and high therapeutic concentrations, respectively, in the maternal perfusate. Valproate (83 µg/ml, 500 µmol·L-1 , n = 6) and the perfusion solution (n = 6) were used as the respective positive and negative controls. A customized gene panel array was used to analyze the expression of carrier genes in the perfused cotyledons. RESULTS: Following a 3-h perfusion, the mRNA expression of SLC19A1 (encoding the reduced folate carrier 1) was downregulated in placentas treated with 10 µg/ml lacosamide (50%) as compared with the vehicle (p < .05). Across all groups, a significant difference was observed in the expression of SLC19A3 (thiamine transporter 2; 52%, 20%, and 9% decrease by 10 µg/ml lacosamide, 83 µg/ml valproate, and 2.5 µg/ml lacosamide, respectively; p < .05). SIGNIFICANCE: Lacosamide at high therapeutic concentrations exerted pharmacological effects on the human placenta. Our findings, if manifested in vivo, suggest that lacosamide could potentially affect folate supply to the fetus and support therapeutic monitoring and careful adjustment of lacosamide plasma concentrations during pregnancy.


Assuntos
Epilepsia , Ácido Valproico , Feminino , Humanos , Gravidez , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Placenta , Lacosamida/uso terapêutico , Feto , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA