Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Cell Proteomics ; 23(3): 100741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387774

RESUMO

Exogenous glucocorticoids are frequently used to treat inflammatory disorders and as adjuncts for the treatment of solid cancers. However, their use is associated with severe side effects and therapy resistance. Novel glucocorticoid receptor (GR) ligands with a patient-validated reduced side effect profile have not yet reached the clinic. GR is a member of the nuclear receptor family of transcription factors and heavily relies on interactions with coregulator proteins for its transcriptional activity. To elucidate the role of the GR interactome in the differential transcriptional activity of GR following treatment with the selective GR agonist and modulator dagrocorat compared to classic (ant)agonists, we generated comprehensive interactome maps by high-confidence proximity proteomics in lung epithelial carcinoma cells. We found that dagrocorat and the antagonist RU486 both reduced GR interaction with CREB-binding protein/p300 and the mediator complex compared to the full GR agonist dexamethasone. Chromatin immunoprecipitation assays revealed that these changes in GR interactome were accompanied by reduced GR chromatin occupancy with dagrocorat and RU486. Our data offer new insights into the role of differential coregulator recruitment in shaping ligand-specific GR-mediated transcriptional responses.


Assuntos
Benzamidas , Cromatina , Fenantrenos , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Mifepristona/farmacologia , Complexo Mediador/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Dexametasona/farmacologia
2.
EMBO J ; 43(5): 695-718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177501

RESUMO

Intestinal goblet cells are secretory cells specialized in the production of mucins, and as such are challenged by the need for efficient protein folding. Goblet cells express Inositol-Requiring Enzyme-1ß (IRE1ß), a unique sensor in the unfolded protein response (UPR), which is part of an adaptive mechanism that regulates the demands of mucin production and secretion. However, how IRE1ß activity is tuned to mucus folding load remains unknown. We identified the disulfide isomerase and mucin chaperone AGR2 as a goblet cell-specific protein that crucially regulates IRE1ß-, but not IRE1α-mediated signaling. AGR2 binding to IRE1ß disrupts IRE1ß oligomerization, thereby blocking its downstream endonuclease activity. Depletion of endogenous AGR2 from goblet cells induces spontaneous IRE1ß activation, suggesting that alterations in AGR2 availability in the endoplasmic reticulum set the threshold for IRE1ß activation. We found that AGR2 mutants lacking their catalytic cysteine, or displaying the disease-associated mutation H117Y, were no longer able to dampen IRE1ß activity. Collectively, these results demonstrate that AGR2 is a central chaperone regulating the goblet cell UPR by acting as a rheostat of IRE1ß endonuclease activity.


Assuntos
Células Caliciformes , Chaperonas Moleculares , Mucinas , Endonucleases , Células Caliciformes/metabolismo , Chaperonas Moleculares/genética , Mucinas/genética , Isomerases de Dissulfetos de Proteínas , Humanos , Linhagem Celular Tumoral
3.
Sci Rep ; 13(1): 21550, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057394

RESUMO

Transglutaminase 1 (TGM1) plays an essential role in skin barrier formation by cross-linking proteins in differentiated keratinocytes. Here, we established a protocol for the antibody-dependent detection of TGM1 protein and the parallel detection of TGM activity. TGM1 immunoreactivity initially increased and co-localized with membrane-associated TGM activity during keratinocyte differentiation. TGM activity persisted upon further differentiation of keratinocytes, whereas TGM1 immunoreactivity was lost under standard assay conditions. Pretreatment of tissue sections with the proteases trypsin or proteinase K enabled immunodetection of TGM1 in cornified keratinocytes, indicating that removal of other proteins was a prerequisite for TGM1 immunolabeling after cornification. The increase of TGM activity and subsequent loss of TGM1 immunoreactivity could be replicated in HEK293T cells transfected with TGM1, suggesting that protein cross-linking mediated by TGM1 itself may lead to reduced recognition of TGM1 by antibodies. To screen for proteins potentially regulating TGM1, we performed Virotrap experiments and identified the CAPNS1 subunit of calpain as an interaction partner of TGM1. Treatment of keratinocytes and TGM1-transfected HEK293T cells with chemical inhibitors of calpain suppressed transglutamination. Our findings suggest that calpain contributes to the control of TGM1-mediated transglutamination and proteins cross-linked by transglutamination mask epitopes of TGM1.


Assuntos
Calpaína , Queratinócitos , Humanos , Calpaína/metabolismo , Células HEK293 , Queratinócitos/metabolismo , Transglutaminases/metabolismo
4.
Cell Rep Methods ; 3(11): 100641, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37963462

RESUMO

Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.


Assuntos
Escherichia coli , Proteínas , Animais , Humanos , Mutação , Proteínas/genética , Mutagênese , Aminoácidos , Mamíferos/genética
5.
Methods Mol Biol ; 2718: 53-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665454

RESUMO

The discovery of protein-protein interactions can provide crucial information on protein function by linking proteins into known pathways or complexes within the cell. Mass spectrometry (MS)-based methods, such as affinity purification (AP)-MS and proximity-dependent biotin identification (BioID), allowed for a vast increase in the number of reported protein complexes. As a more recent addition to the arsenal of MS-based methods, Virotrap represents a unique technology that benefits from the specific properties of the human immunodeficiency virus-1 (HIV-1) Gag polyprotein. More specifically, Virotrap captures protein complexes in virus-like particles budded from human embryonic kidney (HEK293T) cells, bypassing the need for cell lysis and thus supporting identification of their content using MS. Being intrinsically different to its two main predecessors, affinity purification MS (AP-MS) and biotin-dependent identification (BioID), Virotrap was shown to complement data obtained with the existing MS-based toolkit. The proven complementarity of these MS-based strategies underlines the importance of using different techniques to enable comprehensive mapping of protein-protein interactions (PPIs). In this chapter, we provide a detailed overview of the Virotrap protocol to screen for PPIs using a bait protein of interest.


Assuntos
Biotina , Caça , Humanos , Morte Celular , Cromatografia de Afinidade , Células HEK293
6.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298552

RESUMO

Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life.


Assuntos
Membranas Mitocondriais , Proteínas Mitocondriais , Animais , Humanos , Mamíferos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
7.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316325

RESUMO

Alternative translation initiation and alternative splicing may give rise to N-terminal proteoforms, proteins that differ at their N-terminus compared with their canonical counterparts. Such proteoforms can have altered localizations, stabilities, and functions. Although proteoforms generated from splice variants can be engaged in different protein complexes, it remained to be studied to what extent this applies to N-terminal proteoforms. To address this, we mapped the interactomes of several pairs of N-terminal proteoforms and their canonical counterparts. First, we generated a catalogue of N-terminal proteoforms found in the HEK293T cellular cytosol from which 22 pairs were selected for interactome profiling. In addition, we provide evidence for the expression of several N-terminal proteoforms, identified in our catalogue, across different human tissues, as well as tissue-specific expression, highlighting their biological relevance. Protein-protein interaction profiling revealed that the overlap of the interactomes for both proteoforms is generally high, showing their functional relation. We also showed that N-terminal proteoforms can be engaged in new interactions and/or lose several interactions compared with their canonical counterparts, thus further expanding the functional diversity of proteomes.


Assuntos
Processamento Alternativo , Proteoma , Humanos , Células HEK293 , Processamento Alternativo/genética , Citosol
8.
Nucleic Acid Ther ; 33(4): 248-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389884

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Owing to a lack of effective treatments, patients with metastatic disease have a median survival time of 6-12 months. We recently demonstrated that the Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA (SAMMSON) is essential for UM cell survival and that antisense oligonucleotide (ASO)-mediated silencing of SAMMSON impaired cell viability and tumor growth in vitro and in vivo. By screening a library of 2911 clinical stage compounds, we identified the mammalian target of rapamycin (mTOR) inhibitor GDC-0349 to synergize with SAMMSON inhibition in UM. Mechanistic studies revealed that mTOR inhibition enhanced uptake and reduced lysosomal accumulation of lipid complexed SAMMSON ASOs, improving SAMMSON knockdown and further decreasing UM cell viability. We found mTOR inhibition to also enhance target knockdown in other cancer cell lines as well as normal cells when combined with lipid nanoparticle complexed or encapsulated ASOs or small interfering RNAs (siRNAs). Our results are relevant to nucleic acid treatment in general and highlight the potential of mTOR inhibition to enhance ASO and siRNA-mediated target knockdown.


Assuntos
Melanoma , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno/uso terapêutico
9.
Methods Enzymol ; 684: 253-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230591

RESUMO

Given that up to 20% of N-termini of human proteins differ from canonical N-termini as retrieved from sequence databases, a variety of N-terminal proteoforms exists in human cells. These N-terminal proteoforms arise through alternative translation initiation or alternative splicing among others. While such proteoforms diversify the biological functions of the proteome, they remain largely understudied. Recent studies showed that proteoforms expand protein interaction networks by interacting with different prey proteins. As a mass spectrometry-based method to study protein-protein interactions, Virotrap avoids cell lysis by trapping protein complexes in viral-like particles, thereby allowing for the identification of transient and less stable interactions. This chapter describes an adjusted version of Virotrap, decoupled Virotrap, that allows for the detection of interaction partners specific for N-terminal proteoforms.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Humanos , Proteoma/metabolismo , Espectrometria de Massas , Processamento Alternativo , Mapas de Interação de Proteínas
10.
iScience ; 26(2): 105943, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866041

RESUMO

Eukaryotic mRNA has long been considered monocistronic, but nowadays, alternative proteins (AltProts) challenge this tenet. The alternative or ghost proteome has largely been neglected and the involvement of AltProts in biological processes. Here, we used subcellular fractionation to increase the information about AltProts and facilitate the detection of protein-protein interactions by the identification of crosslinked peptides. In total, 112 unique AltProts were identified, and we were able to identify 220 crosslinks without peptide enrichment. Among these, 16 crosslinks between AltProts and Referenced Proteins (RefProts) were identified. We further focused on specific examples such as the interaction between IP_2292176 (AltFAM227B) and HLA-B, in which this protein could be a potential new immunopeptide, and the interactions between HIST1H4F and several AltProts which can play a role in mRNA transcription. Thanks to the study of the interactome and the localization of AltProts, we can reveal more of the importance of the ghost proteome.

11.
J Virol ; 96(19): e0129722, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102648

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Nonstructural protein NS1 of RSV modulates the host innate immune response by acting as an antagonist of type I and type III interferon (IFN) production and signaling in multiple ways. Likely, NS1 performs this function by interacting with different host proteins. In order to obtain a comprehensive overview of the NS1 interaction partners, we performed three complementary protein-protein interaction screens, i.e., BioID, MAPPIT, and KISS. To closely mimic a natural infection, the BioID proximity screen was performed using a recombinant RSV in which the NS1 protein is fused to a biotin ligase. Remarkably, MED25, a subunit of the Mediator complex, was identified in all three performed screening methods as a potential NS1-interacting protein. We confirmed the interaction between MED25 and RSV NS1 by coimmunoprecipitation, not only upon overexpression of NS1 but also with endogenous NS1 during RSV infection. We also demonstrate that the replication of RSV can be enhanced in MED25 knockout A549 cells, suggesting a potential antiviral role of MED25 during RSV infection. Mediator subunits function as transcriptional coactivators and are involved in transcriptional regulation of their target genes. Therefore, the interaction between RSV NS1 and cellular MED25 might be beneficial for RSV during infection by affecting host transcription and the host immune response to infection. IMPORTANCE Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell. A unique RSV protein, NS1, is largely responsible for this effect, probably through interaction with multiple host proteins. A better understanding of the interactions that occur between RSV NS1 and host proteins may help to identify targets for an effective antiviral therapy. We addressed this question by performing three complementary protein-protein interaction screens and identified MED25 as an RSV NS1-interacting protein. We propose a role in innate anti-RSV defense for this Mediator complex subunit.


Assuntos
Complexo Mediador , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas não Estruturais Virais , Células A549 , Humanos , Interferons/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
12.
Lab Chip ; 22(18): 3475-3488, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35943442

RESUMO

Picoinjection is a robust method for reagent addition into microfluidic droplets and has enabled the implementation of numerous multistep droplet assays. Although serial picoinjectors allow to screen many conditions in one run by injecting different combinations of reagents, their use is limited because it is complex to accurately control each injector independently. Here, we present a novel method for flexible, individual picoinjector control that allows to inject a predefined range of volumes by controlling the flow rate of the injector as well as turning off injection by setting the equilibrium pressure, which resulted in a stable interface of the injector liquid with the main microfluidic channel. Robust setting of the equilibrium pressure of an injector was achieved by applying accurate (R2 > 0.94) linear models between the injector and oil pressure in real-time. To illustrate the flexibility of this method, we performed several proof-of-concepts using 1, 2 or 3 picoinjectors loaded with fluorescent dyes. We successfully demonstrated picoinjection approaches using time-invariant settings, in which an injector setting was applied for prolonged times, and time-variant picoinjection, in which the injector settings were continuously varied in order to sweep the injected volumes, both resulting in monodisperse (CV < 3.4%) droplet libraries with different but reproducible fluorescent intensities. To illustrate the potential of the technology for fast compound concentration screenings, we studied the effect of a concentration range of a detergent on single-cell lysis. We anticipate that this robust and versatile methodology will make the serial picoinjection technology more accessible to researchers, allowing its wide implementation in numerous life science applications.


Assuntos
Técnicas Analíticas Microfluídicas , Corantes Fluorescentes , Injeções , Técnicas Analíticas Microfluídicas/métodos , Microfluídica
13.
Sci Adv ; 8(28): eabn1382, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857500

RESUMO

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.

14.
Biomed Pharmacother ; 152: 113218, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709653

RESUMO

Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and auto-immune diseases. Unfortunately, their use is hampered by many side effects and therapy resistance. Efforts to find more selective glucocorticoid receptor (GR) agonists and modulators (called SEGRAMs) that are able to separate anti-inflammatory effects via gene repression from metabolic effects via gene activation, have been unsuccessful so far. In this study, we characterized a set of functionally diverse GR ligands in A549 cells, first using a panel of luciferase-based reporter gene assays evaluating GR-driven gene activation and gene repression. We expanded this minimal assay set with novel luciferase-based read-outs monitoring GR protein levels, GR dimerization and GR Serine 211 (Ser211) phosphorylation status and compared their outcomes with compound effects on the mRNA levels of known GR target genes in A549 cells and primary hepatocytes. We found that luciferase reporters evaluating GR-driven gene activation and gene repression were not always reliable predictors for effects on endogenous target genes. Remarkably, our novel assay monitoring GR Ser211 phosphorylation levels proved to be the most reliable predictor for compound effects on almost all tested endogenous GR targets, both driven by gene activation and repression. The integration of this novel assay in existing screening platforms running both in academia and industry may therefore boost chances to find novel GR ligands with an actual improved therapeutic benefit.


Assuntos
Anti-Inflamatórios , Receptores de Glucocorticoides , Anti-Inflamatórios/farmacologia , Glucocorticoides/farmacologia , Ligantes , Luciferases/genética , Luciferases/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional
15.
Biosens Bioelectron ; 206: 114140, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247858

RESUMO

In recent years, CRISPR-Cas (stands for: clustered regularly interspaced short palindromic repeats - CRISPR associated protein) based technologies have gained increasing attention in the biosensing field. Thanks to excellent sequence specificity, their use is of particular interest for detecting nucleic acid (NA) targets. In this context, signal generation and amplification can be realized by employing the cis-cleavage activity of the Cas9 protein, although other options involving the catalytically inactive dead Cas9 (dCas9) are increasingly explored. The latter are however mostly based on complex protein engineering processes and often lack efficient signal amplification. Here we showed for the first time that flexible signal generation and amplification properties can be integrated into the CRISPR-dCas9 complex based on a straightforward incorporation of a DNA sequence into the trans-activating CRISPR RNA (tracrRNA). The intrinsic nuclease activity of the engineered complex remained conserved, while the incorporated DNA stretch enabled two modes of amplified fluorescent signal generation: (1) as an RNA-cleaving DNA-based enzyme (DNAzyme) or (2) as hybridization site for biotinylated DNA probes, allowing subsequent enzyme labeling. Both signal generation strategies were demonstrated in solution as well as while coupled to a solid surface. Finally, in a proof of concept bioassay, we demonstrated the successful detection of single stranded DNA on magnetic microbeads using the engineered CRISPR-dCas9 complex. Thanks to the flexibility of incorporating different NA-based signal generation and amplification strategies, this novel NA engineering approach holds enormous promise for many new CRISPR-based biosensing applications.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Sistemas CRISPR-Cas/genética , DNA , DNA Catalítico/genética , RNA
16.
Sci Rep ; 12(1): 1513, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087108

RESUMO

Accumulating evidence highlights the role of long non-coding RNAs (lncRNAs) in cellular homeostasis, and their dysregulation in disease settings. Most lncRNAs function by interacting with proteins or protein complexes. While several orthogonal methods have been developed to identify these proteins, each method has its inherent strengths and limitations. Here, we combine two RNA-centric methods ChIRP-MS and RNA-BioID to obtain a comprehensive list of proteins that interact with the well-known lncRNA HOTAIR. Overexpression of HOTAIR has been associated with a metastasis-promoting phenotype in various cancers. Although HOTAIR is known to bind with PRC2 and LSD1 protein complexes, only very limited unbiased comprehensive approaches to map its interactome have been performed. Both ChIRP-MS and RNA-BioID data sets show an association of HOTAIR with mitoribosomes, suggesting that HOTAIR has functions independent of its (post-)transcriptional mode-of-action.


Assuntos
Proteômica
17.
Mass Spectrom Rev ; 41(5): 804-841, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33655572

RESUMO

The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.


Assuntos
Proteínas de Membrana , Proteômica , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteômica/métodos
18.
Oncogene ; 41(1): 15-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508176

RESUMO

Long non-coding RNAs (lncRNAs) can exhibit cell-type and cancer-type specific expression profiles, making them highly attractive as therapeutic targets. Pan-cancer RNA sequencing data revealed broad expression of the SAMMSON lncRNA in uveal melanoma (UM), the most common primary intraocular malignancy in adults. Currently, there are no effective treatments for UM patients with metastatic disease, resulting in a median survival time of 6-12 months. We aimed to investigate the therapeutic potential of SAMMSON inhibition in UM. Antisense oligonucleotide (ASO)-mediated SAMMSON inhibition impaired the growth and viability of a genetically diverse panel of uveal melanoma cell lines. These effects were accompanied by an induction of apoptosis and were recapitulated in two uveal melanoma patient derived xenograft (PDX) models through subcutaneous ASO delivery. SAMMSON pulldown revealed several candidate interaction partners, including various proteins involved in mitochondrial translation. Consequently, inhibition of SAMMSON impaired global, mitochondrial and cytosolic protein translation levels and mitochondrial function in uveal melanoma cells. The present study demonstrates that SAMMSON expression is essential for uveal melanoma cell survival. ASO-mediated silencing of SAMMSON may provide an effective treatment strategy to treat primary and metastatic uveal melanoma patients.


Assuntos
Sobrevivência Celular/genética , Melanoma/mortalidade , RNA Longo não Codificante/metabolismo , Neoplasias Uveais/mortalidade , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
20.
Front Cell Infect Microbiol ; 11: 735416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804992

RESUMO

RNF213 is a large, poorly characterized interferon-induced protein. Mutations in RNF213 are associated with predisposition for Moyamoya disease (MMD), a rare cerebrovascular disorder. Recently, RNF213 was found to have broad antimicrobial activity in vitro and in vivo, yet the molecular mechanisms behind this function remain unclear. Using mass spectrometry-based proteomics and validation by real-time PCR we report here that knockdown of RNF213 leads to transcriptional upregulation of MVP and downregulation of CYR61, in line with reported pro- and anti-bacterial activities of these proteins. Knockdown of RNF213 also results in downregulation of DDAH1, which we discover to exert antimicrobial activity against Listeria monocytogenes infection. DDAH1 regulates production of nitric oxide (NO), a molecule with both vascular and antimicrobial effects. We show that NO production is reduced in macrophages from RNF213 KO mice, suggesting that RNF213 controls Listeria infection through regulation of DDAH1 transcription and production of NO. Our findings propose a potential mechanism for the antilisterial activity of RNF213 and highlight NO as a potential link between RNF213-mediated immune responses and the development of MMD.


Assuntos
Doença de Moyamoya , Óxido Nítrico , Adenosina Trifosfatases/genética , Animais , Predisposição Genética para Doença , Camundongos , Proteoma , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA