Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 758: 144195, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338794

RESUMO

The widespread pollution from the release of microfibers is an emerging concern as they are a potential threat to the environment. Their identification in samples in terms of quantity and pathways remain a challenge as contamination can be a major source of error. A systematic study of synthetic microfibers (MFs) has been carried out in different environmental compartments of an urban area and in the surface waters of the northwestern Mediterranean. The quantity, size and type of polymer of MFs were recorded in air, in waste water from a domestic washing machine, at the inlet and outlet of the Haliotis urban wastewater treatment plant (WWTP) in Nice (Provence Alpes Côte-d'Azur, France) and in a variety of coastal and offshore areas. The results showed that MFs released by clothes during washing (on average of 13 × 106 MFs per m3) are an important emitter of microplastics. Despite its high removal efficiency (87.5% to 98.5%) by Haliotis, a large number of MFs, estimated at 4.3 billion, enter the marine environment daily from the treatment plant. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterization of the raw materials showed that 14 to 50% of fibers are synthetic, mostly polyester and polyamide, the remaining 35 to 72% being natural polymers (cotton, wool) or manufactured by processing natural polymers (especially cellulose). MFs were found in all environmental compartments studied and appear to be widespread in coastal and offshore surface waters with concentrations varying from 2.6 × 103 to 3.70 × 104 m-3. The sources of MFs in the marine environment are multiple, with laundry fibers discharges from WWTP and the atmospheric transport of urban fibers are among the main pathways.

2.
Chemosphere ; 198: 182-190, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421728

RESUMO

The fate of oxo-polymers in nature is strongly dependent on environmental conditions, mainly on the intensity and duration of sunshine, which vary with the season and the climate. In this work, we report the effect of different scenarii on the production and the molecular composition of oligomers released from oxo-biodegradable HDPE films. Under our experimental conditions, the duration of accelerated weathering corresponded to a period of 3 months to 3 years of exposure to outside conditions under temperate climate. In addition, the oligomers were extracted in three different solvents: i) water to mimics the natural environment; ii) acetone and chloroform to identify oligomers trapped in the polymer matrix. The combination of high-resolution mass spectrometry and 1H NMR spectroscopy gives an extensive picture of the relative concentrations and the structural compositions of the extracted oligomers in the different tested conditions. In particular, the masses, the number of oxygen and carbon atoms could be determined for up to 2283 molecules. Globally the concentration and the size of oligomers increased with the duration of extraction, the level of aging of the polymer and the use of non-polar solvents. Surprisingly, the presence of highly oxidized molecules in acetone and chloroform extract, suggested an important swelling of HPDE films in these solvents and a better diffusion of these oligomers in the matrix. In nature, the biodegradability of oligomers could result from processes occurring both at the molecular (oxidation) and the macromolecular (diffusion and release) levels.


Assuntos
Modelos Teóricos , Polietilenos/química , Solventes/química , Acetona/química , Biodegradação Ambiental , Clorofórmio/química , Difusão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Peso Molecular , Oxirredução , Fatores de Tempo , Água/química
3.
Genome Announc ; 5(43)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074669

RESUMO

The whole genome of Rhodococcus enclensis 23b-28, a bacterial strain isolated from cloud water, was sequenced. This microorganism is equipped with genes able to degrade aromatic compounds and could thus play a role in complex organic matter decomposition in cloud water.

4.
Chemosphere ; 184: 366-374, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28605707

RESUMO

The objective of this work was to develop a new approach to assess the specificity and the efficiency of biodegradation of oxidized oligomers extracted from aged HDPE polyethylene films and to bring insight on the mechanisms occurring during biodegradation. 1H NMR spectroscopy and LC Orbitrap™ mass spectrometry were combined together with data processing using Kendrick mass defect calculation and Van Krevelen Diagram. We showed that the molecular weight of extracted oligomers was lower than 850 Da with maximum chain length of 55 carbon atoms. The oligomers were divided into 11 classes of molecules with different oxidation state ranging from 0 to 10. All classes included series of chemically related compounds including up to 19 molecules. 95% of the soluble oligomers were assimilated by a strain of Rhodococcus rhodocchrous after 240 days of incubation. Large highly oxidized molecules completely disappeared while the other classes of molecules were still represented. Molecules containing 0-1 oxygen atom were less degraded. A strong shift to smaller molecules (<450 Da, 25 carbon atoms) was observed suggesting that longer molecules disappeared more rapidly than the smaller ones. It opens new perspectives on biodegradation processes as not only intracellular ß-oxidation must be considered but also extracellular mechanisms leading to chain cleavages.


Assuntos
Biodegradação Ambiental , Polietileno/metabolismo , Rhodococcus/metabolismo , Carbono/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxirredução
5.
Bioresour Technol ; 99(10): 4206-12, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17962015

RESUMO

A physico-chemical process has been developed to transform and enhance lignocellulosic waste in liquid humic extracts: humic-like substances (HLS). The aim of this study was to determine the effects of HLS on plant physiology in order to consider their agricultural use as organic fertilizers. The effects of HLS were evaluated on maize seed germination, and their impact on growth, development and mineral nutrition was studied on maize plants cultivated under hydroponic conditions. The experimental results showed that HLS do not increase the percentage and rate of germination but enhance the root elongation of seeds thus treated. Positive effects were also observed on the whole plant growth as well as on root, shoot and leaf biomass. These effects can be related to the high water and mineral consumption of plants undergoing this treatment. The high water efficiency indicated that such plants produce more biomass than non-treated plants for the same consumption of the nutrient solution. Furthermore, the use of HLS induced a flowering precocity and modified root development suggesting a possible interaction of HLS with developmental processes. Considering the beneficial effect of HLS on different stages of plant growth, their use may present various scientific and economic advantages. The physico-chemical transformation of sawdust is an interesting way of enhancing organic waste materials.


Assuntos
Agricultura/métodos , Biodegradação Ambiental , Biomassa , Biotecnologia/métodos , Substâncias Húmicas , Zea mays/química , Carbono/química , Fertilizantes , Concentração de Íons de Hidrogênio , Hidroponia , Compostos Orgânicos/química , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA