Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Talanta ; 276: 126271, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761663

RESUMO

Near-infrared (NIR) spectroscopy is a well-established analytical technique that has been used in many applications over the years. Due to the advancements in the semiconductor industry, NIR instruments have evolved from benchtop instruments to miniaturised portable devices. The miniaturised NIR instruments have gained more interest in recent years because of the fast and robust measurements they provide with almost no sample pretreatments. However, due to the very different configurations and characteristics of these instruments, they need a dedicated optimization of the measurement conditions, which is crucial for obtaining reliable results. To comprehensively grasp the capabilities and potentials offered by these sensors, it is imperative to examine errors that can affect the raw data, which is a facet frequently overlooked. In this study, measurement error covariance and correlation matrices were calculated and then visually inspected to gain insight into the error structures associated with the devices, and to find the optimal preprocessing technique that may result in the improvement of the models built. This strategy was applied to the classification of sweet and bitter almonds, which were measured with the three portable low-cost NIR devices (SCiO, FlameNIR+ and NeoSpectra Micro Development Kit) after removing the shelled, since their classification is of utmost importance for the almond industry. The results showed that bitter almonds can be classified from sweet almonds using any of the instruments after selecting the optimal preprocessing, obtained through inspection of covariance and correlation matrices. Measurements obtained with FlameNIR + device provided the best classification models with an accuracy of 98 %. The chosen strategy provides new insight into the performance characterization of the fast-growing miniaturised NIR instruments.

2.
Anal Chim Acta ; 1280: 341884, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858563

RESUMO

Digital images are commonly used to monitor processes that are based on colour changes due to their simplicity and easy capture. Colour information in these images can be analysed objectively and accurately using colour histograms. One such process is olive ripening, which is characterized by changes in chemical composition, sensory properties and can be followed by changes in physical appearance, mainly colour. The reference method to quantify the ripeness of olives is the Maturity Index (MI), which is determined by trained experts assigning individual olives into a colour scale through visual inspection. Instead, this study proposes a methodology based on Chemometrics Assisted Colour Histogram-based Analytical Systems (CACHAS) to automatically assess the MI of olives based on R, G, and B colour histograms derived from digital images. The methodology was shown to be easily transferable for routine analysis and capable of controlling the ripening of olives. The study also confirms the high potential of digital images to understand the ripening process of olives (and potentially other fruits) and to predict the MI with satisfactory accuracy, providing an objective and reproducible alternative to visual inspection of trained experts.


Assuntos
Olea , Olea/química , Azeite de Oliva/análise , Frutas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA