Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139266

RESUMO

Lipedema is a chronic condition characterized by disproportionate and symmetrical enlargement of adipose tissue, predominantly affecting the lower limbs of women. This study investigated the use of metabolomics in lipedema research, with the objective of identifying complex metabolic disturbances and potential biomarkers for early detection, prognosis, and treatment strategies. The study group (n = 25) comprised women diagnosed with lipedema. The controls were 25 lean women and 25 obese females, both matched for age. In the patients with lipedema, there were notable changes in the metabolite parameters. Specifically, lower levels of histidine and phenylalanine were observed, whereas pyruvic acid was elevated compared with the weight controls. The receiver operating characteristic (ROC) curves for the diagnostic accuracy of histidine, phenylalanine, and pyruvic acid concentrations in distinguishing between patients with lipedema and those with obesity but without lipedema revealed good diagnostic ability for all parameters, with pyruvic acid being the most promising (area under the curve (AUC): 0.9992). Subgroup analysis within matched body mass index (BMI) ranges (30.0 to 39.9 kg/m2) further revealed that differences in pyruvic acid, phenylalanine, and histidine levels are likely linked to lipedema pathology rather than BMI variations. Changes in low-density lipoprotein (LDL)-6 TG levels and significant reductions in various LDL-2-carried lipids of patients with lipedema, compared with the lean controls, were observed. However, these lipids were similar between the lipedema patients and the obese controls, suggesting that these alterations are related to adiposity. Metabolomics is a valuable tool for investigating lipedema, offering a comprehensive view of metabolic changes and insights into lipedema's underlying mechanisms.


Assuntos
Lipedema , Humanos , Feminino , Lipedema/metabolismo , Histidina , Ácido Pirúvico , Obesidade , Lipídeos , Fenilalanina
2.
Inflamm Bowel Dis ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156773

RESUMO

BACKGROUND: Accurate biomarkers for disease activity and progression in patients with inflammatory bowel disease (IBD) are a prerequisite for individual disease characterization and personalized therapy. We show that metabolic profiling of serum from IBD patients is a promising approach to establish biomarkers. The aim of this work was to characterize metabolomic and lipidomic serum profiles of IBD patients in order to identify metabolic fingerprints unique to the disease. METHODS: Serum samples were obtained from 55 patients with Crohn's disease (CD), 34 patients with ulcerative colitis (UC), and 40 healthy control (HC) individuals and analyzed using proton nuclear magnetic resonance spectroscopy. Classification of patients and HC individuals was achieved by orthogonal partial least squares discriminant analysis and univariate analysis approaches. Disease activity was assessed using the Gastrointestinal Symptom Rating Scale. RESULTS: Serum metabolome significantly differed between CD patients, UC patients, and HC individuals. The metabolomic differences of UC and CD patients compared with HC individuals were more pronounced than the differences between UC and CD patients. Differences in serum levels of pyruvic acid, histidine, and the branched-chain amino acids leucine and valine were detected. The size of low-density lipoprotein particles shifted from large to small dense particles in patients with CD. Of note, apolipoprotein A1 and A2 serum levels were decreased in CD and UC patients with higher fecal calprotectin levels. The Gastrointestinal Symptom Rating Scale is negatively associated with the concentration of apolipoprotein A2. CONCLUSIONS: Metabolomic assessment of serum samples facilitated the differentiation of IBD patients and HC individuals. These differences were constituted by changes in amino acid and lipoprotein levels. Furthermore, disease activity in IBD patients was associated with decreased levels of the atheroprotective apolipoproteins A1 and A2.


The metabolic and lipidomic serum profile of patients with inflammatory bowel disease was analyzed using proton nuclear magnetic resonance spectroscopy. A significantly altered profile in comparison with healthy control individuals was identified, characterized by more atherogenic properties.

3.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37362882

RESUMO

The 2-year SARS-CoV-2 surveillance follow-up of the ELISA cohort shows the successful transition from COVID-19 pandemic to endemic, confirms occupational risk factors in healthcare and identifies household risk factors in a high-incidence period https://bit.ly/43x8q6i.

4.
Gut Microbes ; 15(1): 2192547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36945120

RESUMO

Growing evidence supports the use of probiotics to prevent or mitigate obesity-related dysmetabolism and non-alcoholic fatty liver disease (NAFLD). However, frequent reports of responders versus non-responders to probiotic treatment warrant a better understanding of key modifiers of host-microbe interactions. The influence of host diet on probiotic efficacy, in particular against metabolic diseases, remains elusive. We fed C57BL6/J mice a low fat reference diet or one of two energy-matched high fat and high sucrose diets for 12 weeks; a classical high fat diet (HFD) and a customized fast food-mimicking diet (FFMD). During the studies, mice fed either obesogenic diet were gavaged daily with one of two probiotic lactic acid bacteria (LAB) strains previously classified as Lactobaccillus, namely Limosilactobacillus reuteri (L. reuteri)or Lacticaseibacillus paracaseisubsp. paracasei (L. paracasei), or vehicle. The tested probiotics exhibited a reproducible efficacy but dichotomous response according to the obesogenic diets used. Indeed, L. paracaseiprevented weight gain, improved insulin sensitivity, and protected against NAFLD development in mice fed HFD, but not FFMD. Conversely, L. reuteri improved glucoregulatory capacity, reduced NAFLD development, and increased distal gut bile acid levels associated with changes in predicted functions of the gut microbiota exclusively in the context of FFMD-feeding. We found that the probiotic efficacy of two LAB strains is highly dependent on experimental obesogenic diets. These findings highlight the need to carefully consider the confounding impact of diet in order to improve both the reproducibility of preclinical probiotic studies and their clinical research translatability.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Probióticos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Reprodutibilidade dos Testes , Obesidade/microbiologia , Probióticos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 13: 1004644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466846

RESUMO

The modulation of inflammatory (auto)immune reactions by nutrients and gut bacterial metabolites is of great interest for potential preventive and therapeutic strategies. B cell-derived plasma cells are major players in inflammatory (auto)immune responses and can exhibit pro- or anti-inflammatory effects through (auto)antibody-dependent and -independent functions. Emerging evidence indicates a key role of nutrients and microbial metabolites in regulating the differentiation of plasma cells as well as their differentiation to pro- or anti-inflammatory phenotypes. These effects might be mediated indirectly by influencing other immune cells or directly through B cell-intrinsic mechanisms. Here, we provide an overview of nutrients and metabolites that influence B cell-intrinsic signaling pathways regulating B cell activation, plasma cell differentiation, and effector functions. Furthermore, we outline important inflammatory plasma cell phenotypes whose differentiation could be targeted by nutrients and microbial metabolites. Finally, we discuss possible implications for inflammatory (auto)immune conditions.


Assuntos
Autoimunidade , Plasmócitos , Diferenciação Celular , Linfócitos B , Nutrientes
6.
BMC Public Health ; 22(1): 1305, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799167

RESUMO

BACKGROUND: Considering the insufficiently controlled spread of new SARS-CoV-2 variants, partially low vaccination rates, and increased risk of a post-COVID syndrome, well-functioning, targeted intervention measures at local and national levels are urgently needed to contain the SARS-CoV-2 pandemic. Surveillance concepts (cross-sectional, cohorts, clusters) need to be carefully selected to monitor and assess incidence and prevalence at the population level. A critical methodological gap for identifying specific risks/dynamics for SARS-Cov-2 transmission and post-COVID-19-syndrome includes repetitive testing for past or present infection of a defined cohort with simultaneous assessment of symptoms, behavior, risk, and protective factors, as well as quality of life. METHODS: The ELISA-Study is a longitudinal, prospective surveillance study with a cohort approach launched in Luebeck in April 2020. The first part comprised regular PCR testing, antibody measurements, and a recurrent App-based questionnaire for a population-based cohort of 3000 inhabitants of Luebeck. The follow-up study protocol includes self-testing for antibodies and PCR testing for a subset of the participants, focusing on studying immunity after vaccination and/or infection and post-COVID-19 symptoms. DISCUSSION: The ELISA cohort and our follow-up study protocol will enable us to study the effects of a sharp increase of SARS-CoV-2 infections on seroprevalence of Anti-SARS-CoV-2 antibodies, post-COVID-19-symptoms, and possible medical, occupational, and behavioral risk factors. We will be able to monitor the pandemic continuously and discover potential sequelae of an infection long-term. Further examinations can be readily set up on an ad-hoc basis in the future. Our study protocol can be adapted to other regions and settings and is transferable to other infectious diseases. TRIAL REGISTRATION: DRKS.de, German Clinical Trials Register (DRKS), Identifier: DRKS00023418 , Registered on 28 October 2020.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos de Coortes , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Seguimentos , Humanos , Estudos Prospectivos , Qualidade de Vida , Estudos Soroepidemiológicos
7.
Sci Adv ; 8(15): eabm5016, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427158

RESUMO

With newly rising coronavirus disease 2019 (COVID-19) cases, important data gaps remain on (i) long-term dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates in fixed cohorts (ii) identification of risk factors, and (iii) establishment of effective surveillance strategies. By polymerase chain reaction and antibody testing of 1% of the local population and >90,000 app-based datasets, the present study surveilled a catchment area of 300,000 inhabitants from March 2020 to February 2021. Cohort (56% female; mean age, 45.6 years) retention was 75 to 98%. Increased risk for seropositivity was detected in several high-exposure groups, especially nurses. Unreported infections dropped from 92 to 29% during the study. "Contact to COVID-19-affected" was the strongest risk factor, whereas public transportation, having children in school, or tourism did not affect infection rates. With the first SARS-CoV-2 cohort study, we provide a transferable model for effective surveillance, enabling monitoring of reinfection rates and increased preparedness for future pandemics.

8.
PLoS One ; 17(3): e0266071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333906

RESUMO

The microbially-derived short-chain fatty acid butyrate is a central inhibitor of inflammatory innate and adaptive immune responses. Emerging evidence suggests that butyrate induces differentiation of IL-10-producing (IL-10+) regulatory B cells. However, the underlying mechanisms of butyrate-driven modulation of B cell differentiation are not fully defined. Given the dominant role of regulatory plasma cells (PCs) as the main source of anti-inflammatory cytokines including IL-10 and the observation that butyrate also induces the differentiation of PCs, we here investigated the effect of the microbial metabolite butyrate on the induction of regulatory IL-10+ PCs and underlying mechanisms. Here we show that butyrate induces the differentiation of IL-10+IgM+ PCs. Ex vivo, butyrate, but hardly propionate, another microbially-derived short-chain fatty acid, induced the differentiation of IL-10+IgM+ CD138high PCs from isolated splenic murine B cells. In vivo, administration of butyrate via drinking water or by daily intraperitoneal injection increased the number of IL-10+IgM+ CD138high PCs in the spleens of Ovalbumin (Ova)/complete Freund's adjuvant-immunized mice. The induction of these regulatory PCs was associated with an increase of anti-Ova IgM, but a reduction of anti-Ova class-switched pathogenic IgG2b serum antibodies. Based on the knowledge that butyrate inhibits histone deacetylases (HDACs) thereby increasing histone acetylation, we identified here that HDAC3 inhibition was sufficient to induce PC differentiation and IL-10+ expression. Furthermore, reduced mitochondrial superoxide levels following butyrate treatment and HDAC3 inhibition were necessary for PC differentiation, but not IL-10 expression. In summary, the microbial metabolite butyrate promotes the differentiation of IgM+ PCs and their expression of IL-10. HDAC3 inhibition may be involved as an underlying pathway for both PC differentiation and IL-10 expression, while reduced mitochondrial superoxide levels are crucial only for PC differentiation. The induction of regulatory IL-10+IgM+ PCs and the inhibition of class switching to antigen-specific pathogenic IgG subclasses might represent important pathways of butyrate to limit inflammation.


Assuntos
Butiratos , Interleucina-10 , Animais , Butiratos/farmacologia , Ácidos Graxos Voláteis , Imunoglobulina M , Interleucina-10/metabolismo , Camundongos , Plasmócitos/metabolismo , Superóxidos
9.
J Med Case Rep ; 16(1): 73, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35180884

RESUMO

BACKGROUND: Splenosis is the heterotopic autotransplantation of splenic tissue after severe splenic trauma and/or splenectomy. The epidemiology is elusive, but splenosis is frequently misdiagnosed as malignant tumors of gastrointestinal, gynecological, or hematological origin before the correct diagnosis is ultimately found. We herein report a rare case of combined, extensive intraabdominal and intrathoracic splenosis initially presenting as pleural mesothelioma. CASE PRESENTATION: A 63-year-old Caucasian male presented with dyspnea and recurring thoracic pain. Initial X-ray and computed tomography scans showed disseminated intrathoracic and intraabdominal lesions. Consequently, thoracoabdominal mesothelioma or a polytopically metastasized cancer of unknown origin was suspected. A thorough examination of the patient's medical history and contrast-enhanced ultrasound by a skilled examiner revealed the diagnosis of extensive abdominal and thoracic splenosis as a consequence of an abdominal gunshot wound with a ruptured diaphragm several decades earlier. Timely diagnosis by noninvasive measures prevented the patient from potential complications of harmful diagnostic procedures, including nuclear imaging and biopsies. The patient is currently treated for hepatitis C and chronic obstructive lung disease, whereas no specific treatment for splenosis is required. CONCLUSIONS: We present a case of rare intrathoracic and intraperitoneal splenosis mimicking mesothelioma. Contrast-enhanced ultrasound and thorough patient history were used for diagnosis and prevented this patient from having to undergo potentially harmful diagnostics. Splenosis can occur after splenic trauma and, consequently, needs to be considered as a rare differential diagnosis to malignant tumors of various origins when a matching patient history is obtained.


Assuntos
Traumatismos Abdominais , Mesotelioma , Esplenose , Ferimentos por Arma de Fogo , Traumatismos Abdominais/complicações , Diagnóstico Diferencial , Humanos , Masculino , Mesotelioma/complicações , Mesotelioma/diagnóstico por imagem , Pessoa de Meia-Idade , Esplenectomia , Esplenose/diagnóstico por imagem , Esplenose/etiologia , Ferimentos por Arma de Fogo/complicações
10.
Front Immunol ; 13: 1020844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713457

RESUMO

Background: The new types of mRNA-containing lipid nanoparticle vaccines BNT162b2 and mRNA-1273 and the adenovirus-based vaccine AZD1222 were developed against SARS-CoV-2 and code for its spike (S) protein. Several studies have investigated short-term antibody (Ab) responses after vaccination. Objective: However, the impact of these new vaccine formats with unclear effects on the long-term Ab response - including isotype, subclass, and their type of Fc glycosylation - is less explored. Methods: Here, we analyzed anti-S Ab responses in blood serum and the saliva of SARS-CoV-2 naïve and non-hospitalized pre-infected subjects upon two vaccinations with different mRNA- and adenovirus-based vaccine combinations up to day 270. Results: We show that the initially high mRNA vaccine-induced blood and salivary anti-S IgG levels, particularly IgG1, markedly decrease over time and approach the lower levels induced with the adenovirus-based vaccine. All three vaccines induced, contrary to the short-term anti-S IgG1 response with high sialylation and galactosylation levels, a long-term anti-S IgG1 response that was characterized by low sialylation and galactosylation with the latter being even below the corresponding total IgG1 galactosylation level. Instead, the mRNA, but not the adenovirus-based vaccines induced long-term IgG4 responses - the IgG subclass with inhibitory effector functions. Furthermore, salivary anti-S IgA levels were lower and decreased faster in naïve as compared to pre-infected vaccinees. Predictively, age correlated with lower long-term anti-S IgG titers for the mRNA vaccines. Furthermore, higher total IgG1 galactosylation, sialylation, and bisection levels correlated with higher long-term anti-S IgG1 sialylation, galactosylation, and bisection levels, respectively, for all vaccine combinations. Conclusion: In summary, the study suggests a comparable "adjuvant" potential of the newly developed vaccines on the anti-S IgG Fc glycosylation, as reflected in relatively low long-term anti-S IgG1 galactosylation levels generated by the long-lived plasma cell pool, whose induction might be driven by a recently described TH1-driven B cell response for all three vaccines. Instead, repeated immunization of naïve individuals with the mRNA vaccines increased the proportion of the IgG4 subclass over time which might influence the long-term Ab effector functions. Taken together, these data shed light on these novel vaccine formats and might have potential implications for their long-term efficacy.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas de mRNA , Adenoviridae/genética
11.
Front Mol Biosci ; 8: 737039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938772

RESUMO

Coronavirus disease 2019 (COVID-19) is a viral infection affecting multiple organ systems of great significance for metabolic processes. Thus, there is increasing interest in metabolic and lipoprotein signatures of the disease, and early analyses have demonstrated a metabolic pattern typical for atherosclerotic and hepatic damage in COVID-19 patients. However, it remains unclear whether this is specific for COVID-19 and whether the observed signature is caused by the disease or rather represents an underlying risk factor. To answer this question, we have analyzed 482 serum samples using nuclear magnetic resonance metabolomics, including longitudinally collected samples from 12 COVID-19 and 20 cardiogenic shock intensive care patients, samples from 18 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody-positive individuals, and single time point samples from 58 healthy controls. COVID-19 patients showed a distinct metabolic serum profile, including changes typical for severe dyslipidemia and a deeply altered metabolic status compared with healthy controls. Specifically, very-low-density lipoprotein and intermediate-density lipoprotein particles and associated apolipoprotein B and intermediate-density lipoprotein cholesterol were significantly increased, whereas cholesterol and apolipoprotein A2 were decreased. Moreover, a similarly perturbed profile was apparent when compared with other patients with cardiogenic shock who are in the intensive care unit when looking at a 1-week time course, highlighting close links between COVID-19 and lipid metabolism. The metabolic profile of COVID-19 patients distinguishes those from healthy controls and also from patients with cardiogenic shock. In contrast, anti-SARS-CoV-2 antibody-positive individuals without acute COVID-19 did not show a significantly perturbed metabolic profile compared with age- and sex-matched healthy controls, but SARS-CoV-2 antibody-titers correlated significantly with metabolic parameters, including levels of glycine, ApoA2, and small-sized low- and high-density lipoprotein subfractions. Our data suggest that COVID-19 is associated with dyslipidemia, which is not observed in anti-SARS-CoV-2 antibody-positive individuals who have not developed severe courses of the disease. This suggests that lipoprotein profiles may represent a confounding risk factor for COVID-19 with potential for patient stratification.

12.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830971

RESUMO

To enable rapid proliferation, colorectal tumor cells up-regulate epidermal growth factor receptor (EGFR) signaling and aerobic glycolysis, resulting in substantial lactate release into the tumor microenvironment and impaired anti-tumor immune responses. We hypothesized that a nutritional intervention designed to reduce aerobic glycolysis may boost the EGFR-directed antibody (Ab)-based therapy of pre-existing colitis-driven colorectal carcinoma (CRC). CRC development was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) administration to C57BL/6 mice. AOM/DSS-treated mice were fed a glucose-free, high-protein diet (GFHPD) or an isoenergetic control diet (CD) in the presence or absence of an i.p. injection of an anti-EGFR mIgG2a or respective controls. AOM/DSS-treated mice on a GFHPD displayed a reduced systemic glucose metabolism associated with reduced oxidative phosphorylation (OXPHOS) complex IV expression and diminished tumor loads. Comparable but not additive to an anti-EGFR-Ab therapy, the GFHPD was accompanied by enhanced tumoral goblet cell differentiation and decreased colonic PD-L1 and splenic CD3ε, as well as PD-1 immune checkpoint expression. In vitro, glucose-free, high-amino acid culture conditions reduced proliferation but improved goblet cell differentiation of murine and human CRC cell lines MC-38 and HT29-MTX in combination with down-regulation of PD-L1 expression. We here found GFHPD to systemically dampen glycolysis activity, thereby reducing CRC progression with a similar efficacy to EGFR-directed antibody therapy.

14.
Neurol Res Pract ; 3(1): 34, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34148546

RESUMO

Neurological long-term sequelae are increasingly considered an important challenge in the recent COVID-19 pandemic. However, most evidence for neurological symptoms after SARS-CoV-2 infection and central nervous system invasion of the virus stems from individuals severely affected in the acute phase of the disease. Here, we report long-lasting cognitive impairment along with persistent cerebrospinal fluid anti-SARS-CoV-2 antibodies in a female patient with unremarkable standard examination 6 months after mild COVID-19, supporting the implementation of neuropsychological testing and specific cerebrospinal fluid investigation also in patients with a relatively mild acute disease phase.

16.
Front Med (Lausanne) ; 6: 103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143764

RESUMO

Today, daylight saving time is observed in nearly 80 countries around the world, including the European Union, the USA, Canada, and Russia. The benefits of daylight saving time in energy management have been questioned since it was first introduced during World War I and the latest research has led to varying results. Meanwhile, adverse effects of seasonal time shifts on human biology have been postulated and the European Union is planning to abandon the biannual clock change completely. Medical studies have revealed a correlation of seasonal time shifts with increased incidences of several diseases including stroke, myocardial infarction, and unipolar depressive episodes. Moreover, studies in mice have provided convincing evidence, that circadian rhythm disruption may be involved in the pathogenesis of inflammatory bowel diseases, mainly by disturbing the intestinal barrier integrity. Here, we present previously unpublished data from a large German cohort indicating a correlation of seasonal clock changes and medical leaves due to ulcerative colitis and Crohn's disease. Furthermore, we discuss the health risks of clock changes and the current attempts on reforming daylight saving time from a medical perspective.

17.
PLoS One ; 9(7): e102347, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051500

RESUMO

Enteroendocrine cells (EEC) produce neuropeptides, which are crucially involved in the maintenance of the intestinal barrier. Hence, EEC dysfunction is suggested to be involved in the complex pathophysiology of inflammatory bowel disease (IBD), which is characterized by decreased intestinal barrier function. However, the underlying mechanisms for EEC dysfunction are not clear and suitable models for a better understanding are lacking. Here, we demonstrate that Carboxypeptidase E (CPE) is specifically expressed in EEC of the murine colon and ileum and that its deficiency is associated with reduced intestinal levels of Neuropeptide Y (NPY) and Peptide YY (PYY), which are both produced by EEC. Moreover, cpe-/- mice exhibit an aggravated course of DSS-induced chronic colitis compared to wildtype littermates. In addition, we observed elevated mucosal IL-6 and KC transcript levels already at baseline conditions in cpe-/- mice. Moreover, supernatants obtained from isolated intestinal crypts of cpe-/- mice lead to increased IL-6 and KC expression in MODE-K cells in the presence of LPS. This effect was reversible by co-administration of recombinant NPY, suggesting a CPE mediated immunosuppressive effect in the intestines by influencing the processing of specific neuropeptides. In this context, the chemotaxis of bone marrow derived macrophages towards respective supernatants was enhanced. In conclusion, our data point to an anti-inflammatory role of CPE in the intestine by influencing local cytokine levels and thus regulating the migration of myeloid immune cells into the mucosa. These findings highlight the importance of EEC for intestinal homeostasis and propose EEC as potential therapeutic targets in IBD.


Assuntos
Carboxipeptidase H/fisiologia , Colite/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Animais , Movimento Celular/imunologia , Células Cultivadas , Cromogranina B/metabolismo , Colite/induzido quimicamente , Colite/imunologia , Colo/enzimologia , Colo/imunologia , Sulfato de Dextrana , Homeostase , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Neuropeptídeo Y/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA