Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Basic Res Cardiol ; 119(2): 261-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436707

RESUMO

Myocardial infarction (MI) induces the generation of proinflammatory Ly6Chigh monocytes in the spleen and the recruitment of these cells to the myocardium. CD4+ Foxp3+ CD25+ T-cells (Tregs) promote the healing process after myocardial infarction by engendering a pro-healing differentiation state in myocardial monocyte-derived macrophages. We aimed to study the effects of CD4+ T-cells on splenic myelopoiesis and monocyte differentiation. We instigated MI in mice and found that MI-induced splenic myelopoiesis is abrogated in CD4+ T-cell deficient animals. Conventional CD4+ T-cells promoted myelopoiesis in vitro by cell-cell-contact and paracrine mechanisms, including interferon-gamma (IFN-γ) signalling. Depletion of regulatory T-cells enhanced myelopoiesis in vivo, as evidenced by increases in progenitor cell numbers and proliferative activity in the spleen 5 days after MI. The frequency of CD4+ T-cells-producing factors that promote myelopoiesis increased within the spleen of Treg-depleted mice. Moreover, depletion of Tregs caused a proinflammatory bias in splenic Ly6Chigh monocytes, which showed predominantly upregulated expression of IFN-γ responsive genes after MI. Our results indicate that conventional CD4+ T-cells promote and Tregs attenuate splenic myelopoiesis and proinflammatory differentiation of monocytes.


Assuntos
Monócitos , Infarto do Miocárdio , Camundongos , Animais , Monócitos/metabolismo , Mielopoese , Baço/metabolismo , Infarto do Miocárdio/metabolismo , Linfócitos T Reguladores/metabolismo , Interferon gama/farmacologia , Camundongos Endogâmicos C57BL
2.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38305765

RESUMO

The intestinal epithelium is the first line of defense against enteric pathogens. Removal of infected cells by exfoliation prevents mucosal translocation and systemic infection in the adult host, but is less commonly observed in the neonatal intestine. Instead, here, we describe non-professional efferocytosis of Salmonella-infected enterocytes by neighboring epithelial cells in the neonatal intestine. Intestinal epithelial stem cell organoid cocultures of neonatal and adult cell monolayers with damaged enterocytes replicated this observation, confirmed the age-dependent ability of intestinal epithelial cells for efferocytosis, and identified the involvement of the "eat-me" signals and adaptors phosphatidylserine and C1q as well as the "eat-me" receptors integrin-αv (CD51) and CD36 in cellular uptake. Consistent with this, massive epithelial cell membrane protrusions and CD36 accumulation at the contact site with apoptotic cells were observed in the infected neonatal host in vivo. Efferocytosis of infected small intestinal enterocytes by neighboring epithelial cells may represent a previously unrecognized mechanism of neonatal antimicrobial host defense to maintain barrier integrity.


Assuntos
Eferocitose , Intestinos , Células Epiteliais , Mucosa Intestinal/metabolismo , Salmonella
3.
Curr Microbiol ; 81(1): 24, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032503

RESUMO

This study aimed to compare diagnostic sensitivities of a rapid test (Rt) and an ELISA kit for detecting anti-SARS-CoV-2 IgM/IgG in virus-RT-PCR-positive (VPP) and virus-RT-PCR-unchecked (VPU) subjects in an Egyptian cohort during the first wave of SARS-CoV-2 infection. The results revealed higher sensitivity of the Rt for detecting IgM/IgG in the VPP subjects. Both the Rt and ELISA showed identical sensitivities for IgM detection in the VPU subjects. The ELISA was more sensitive for detecting IgG in the VPU subjects. Generally, within both the VPP and the VPU groups, Rt was more sensitive for detecting IgM/IgG among the symptomatic (S) compared to asymptomatic (AS) subjects than ELISA. Within the VPP group, the Rt was more sensitive for detecting both IgM/IgG among the AS subjects than ELISA. In the VPU group, the Rt was more sensitive for detecting IgM among the S subjects than ELISA. The ELISA was more sensitive for detecting IgM/IgG among AS subjects than the Rt. From these results we concluded that, despite the limitation of sample size, this study indicates suitability of the used Rt for detecting anti-SARS-CoV-2 IgM/IgG among S subjects and sheds light on possibility of relying on the used ELISA for IgG detection among AS human subjects.


Assuntos
COVID-19 , Humanos , Egito , COVID-19/diagnóstico , SARS-CoV-2 , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina M
4.
Nucleic Acids Res ; 51(3): e16, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36537202

RESUMO

Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , RNA , Mitocôndrias/genética , Plastídeos
5.
Viruses ; 14(11)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36423194

RESUMO

Methanosarcina spherical virus (MetSV), infecting Methanosarcina species, encodes 22 genes, but their role in the infection process in combination with host genes has remained unknown. To study the infection process in detail, infected and uninfected M. mazei cultures were compared using dual-RNAseq, qRT-PCRs, and transmission electron microscopy (TEM). The transcriptome analysis strongly indicates a combined role of virus and host genes in replication, virus assembly, and lysis. Thereby, 285 host and virus genes were significantly regulated. Within these 285 regulated genes, a network of the viral polymerase, MetSVORF6, MetSVORF5, MetSVORF2, and the host genes encoding NrdD, NrdG, a CDC48 family protein, and a SSB protein with a role in viral replication was postulated. Ultrastructural analysis at 180 min p.i. revealed many infected cells with virus particles randomly scattered throughout the cytoplasm or attached at the cell surface, and membrane fragments indicating cell lysis. Dual-RNAseq and qRT-PCR analyses suggested a multifactorial lysis reaction in potential connection to the regulation of a cysteine proteinase, a pirin-like protein and a HicB-solo protein. Our study's results led to the first preliminary infection model of MetSV infecting M. mazei, summarizing the key infection steps as follows: replication, assembly, and host cell lysis.


Assuntos
Interações entre Hospedeiro e Microrganismos , Tectiviridae , Methanosarcina/genética , Genes Virais , Replicação Viral
6.
Nat Commun ; 13(1): 1525, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314690

RESUMO

A central question concerning natural competence is why orthologs of competence genes are conserved in non-competent bacterial species, suggesting they have a role other than in transformation. Here we show that competence induction in the human pathogen Staphylococcus aureus occurs in response to ROS and host defenses that compromise bacterial respiration during infection. Bacteria cope with reduced respiration by obtaining energy through fermentation instead. Since fermentation is energetically less efficient than respiration, the energy supply must be assured by increasing the glycolytic flux. The induction of natural competence increases the rate of glycolysis in bacteria that are unable to respire via upregulation of DNA- and glucose-uptake systems. A competent-defective mutant showed no such increase in glycolysis, which negatively affects its survival in both mouse and Galleria infection models. Natural competence foster genetic variability and provides S. aureus with additional nutritional and metabolic possibilities, allowing it to proliferate during infection.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Fermentação , Glicólise/genética , Camundongos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
7.
J Immunol ; 208(7): 1675-1685, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321877

RESUMO

Strategically located at mucosal sites, mast cells are instrumental in sensing invading pathogens and modulating the quality of the ensuing immune responses depending on the nature of the infecting microbe. It is believed that mast cells produce type I IFN (IFN-I) in response to viruses, but not to bacterial infections, because of the incapacity of bacterial pathogens to internalize within mast cells, where signaling cascades leading to IFN-I production are generated. However, we have previously reported that, in contrast with other bacterial pathogens, Staphylococcus aureus can internalize into mast cells and therefore could trigger a unique response. In this study, we have investigated the molecular cross-talk between internalized S. aureus and the human mast cells HMC-1 using a dual RNA sequencing approach. We found that a proportion of internalized S. aureus underwent profound transcriptional reprogramming within HMC-1 cells to adapt to the nutrients and stress encountered in the intracellular environment and remained viable. HMC-1 cells, in turn, recognized intracellular S. aureus via cGMP-AMP synthase-STING-TANK-binding kinase 1 signaling pathway, leading to the production of IFN-I. Bacterial internalization and viability were crucial for IFN-I induction because inhibition of S. aureus internalization or infection with heat-killed bacteria completely prevented the production of IFN-I by HMC-1 cells. Feeding back in an autocrine manner in S. aureus-harboring HMC-1 cells and in a paracrine manner in noninfected neighboring HMC-1 cells, IFN-I promoted a cell-autonomous antimicrobial state by inducing the transcription of IFN-I-stimulated genes. This study provides unprecedented evidence of the capacity of mast cells to produce IFN-I in response to a bacterial pathogen.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Citosol , Humanos , Imunidade Celular , Mastócitos
8.
mSystems ; 6(6): e0040321, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931882

RESUMO

Q (query) fever is an infectious zoonotic disease caused by the Gram-negative bacterium Coxiella burnetii. Although the disease has been studied for decades, it still represents a threat due to sporadic outbreaks across farms in Europe. The absence of a central platform for Coxiella typing data management is an important epidemiological gap that is relevant in the case of an outbreak. To fill this gap, we have designed and implemented an online, open-source, web-based platform called CoxBase (https://coxbase.q-gaps.de). This platform includes a database that holds genotyping information on more than 400 Coxiella isolates alongside metadata that annotate them. We have also implemented features for in silico genotyping of completely or minimally assembled Coxiella sequences using five different typing methods, querying of existing isolates, visualization of isolate geodata via aggregation on a world map, and submission of new isolates. We tested our in silico typing method on 50 Coxiella genomes downloaded from the RefSeq database, and we successfully genotyped all genomes except for cases where the sequence quality was poor. We identified new spacer sequences using our implementation of the multispacer sequence typing (MST) in silico typing method and established adaA gene phenotypes for all 50 genomes as well as their plasmid types. IMPORTANCE Q fever is a zoonotic disease that is a source of active epidemiological concern due to its persistent threat to public health. In this project, we have identified areas in the field of Coxiella research, especially regarding public health and genomic analysis, where there is an inadequacy of resources to monitor, organize, and analyze genomic data from C. burnetii. Subsequently, we have created an open, web-based platform that contains epidemiological information, genome typing functions comprising all the available Coxiella typing methods, and tools for isolate data discovery and visualization that could help address the above-mentioned challenges. This is the first platform to combine all disparate genotyping systems for Coxiella burnetii as well as metadata assets with tools for genomic comparison and analyses. This platform is a valuable resource for laboratory researchers as well as research epidemiologists interested in investigating the relatedness or dissimilarity among C. burnetii strains.

9.
Microbiol Spectr ; 9(2): e0004421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34550019

RESUMO

Noncoding small RNAs (sRNAs) are crucial for the posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. In the human pathogen Bordetella pertussis, which causes whooping cough, virulence is controlled primarily by the master two-component system BvgA (response regulator)/BvgS (sensor kinase). In this system, BvgA is phosphorylated (Bvg+ mode) or nonphosphorylated (Bvg- mode), with global transcriptional differences between the two. B. pertussis also carries the bacterial sRNA chaperone Hfq, which has previously been shown to be required for virulence. Here, we conducted transcriptomic analyses to identify possible B. pertussis sRNAs and to determine their BvgAS dependence using transcriptome sequencing (RNA-seq) and the prokaryotic sRNA prediction program ANNOgesic. We identified 143 possible candidates (25 Bvg+ mode specific and 53 Bvg- mode specific), of which 90 were previously unreported. Northern blot analyses confirmed all of the 10 ANNOgesic candidates that we tested. Homology searches demonstrated that 9 of the confirmed sRNAs are highly conserved among B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica, with one that also has homologues in other species of the Alcaligenaceae family. Using coimmunoprecipitation with a B. pertussis FLAG-tagged Hfq, we demonstrated that 3 of the sRNAs interact directly with Hfq, which is the first identification of sRNA binding to B. pertussis Hfq. Our study demonstrates that ANNOgesic is a highly useful tool for the identification of sRNAs in this system and that its combination with molecular techniques is a successful way to identify various BvgAS-dependent and Hfq-binding sRNAs. IMPORTANCE Noncoding small RNAs (sRNAs) are crucial for posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. We have investigated the presence of sRNAs in the obligate human pathogen B. pertussis, using transcriptome sequencing (RNA-seq) and the recently developed prokaryotic sRNA search program ANNOgesic. This analysis has identified 143 sRNA candidates (90 previously unreported). We have classified their dependence on the B. pertussis two-component system required for virulence, namely, BvgAS, based on their expression in the presence/absence of the phosphorylated response regulator BvgA, confirmed several by Northern analyses, and demonstrated that 3 bind directly to B. pertussis Hfq, the RNA chaperone involved in mediating sRNA effects. Our study demonstrates the utility of combining RNA-seq, ANNOgesic, and molecular techniques to identify various BvgAS-dependent and Hfq-binding sRNAs, which may unveil the roles of sRNAs in pertussis pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/genética , Fatores de Virulência de Bordetella/genética , Bordetella bronchiseptica/genética , Bordetella parapertussis/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Software , Transcriptoma/genética , Virulência/genética
10.
Nucleic Acids Res ; 49(6): 3003-3019, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33706375

RESUMO

Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rhodobacter sphaeroides/genética , Alphaproteobacteria/genética , Proteínas de Bactérias/fisiologia , Simulação por Computador , Endorribonucleases/fisiologia , Estabilidade de RNA , Proteínas de Ligação a RNA/fisiologia , Rhodobacter sphaeroides/metabolismo , Estresse Fisiológico , Transcriptoma
11.
Nucleic Acids Res ; 49(5): 2894-2915, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33619526

RESUMO

Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.


Assuntos
Antibacterianos/farmacologia , Peptídeos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sinorhizobium meliloti/genética , Tetraciclina/farmacologia , Pareamento de Bases , Regulação Bacteriana da Expressão Gênica , Peptídeos/química , RNA Antissenso/metabolismo , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sinorhizobium meliloti/efeitos dos fármacos
12.
Microbiologyopen ; 9(12): e1138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33242236

RESUMO

Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE-respiring representatives of the genus, uncovered the genetic inactivation of a two-component system (TCS) in the OHR gene region of the natural mutants. The assumption that the TCS gene products serve as a PCE sensor that initiates gene transcription was supported by the constitutive low-level expression of the TCS operon in fumarate-adapted cells of Sulfurospirillum multivorans. Via RNA sequencing, eight transcriptional units were identified in the OHR gene region, which includes the TCS operon, the PCE reductive dehalogenase operon, the gene cluster for norcobamide biosynthesis, and putative accessory genes with unknown functions. The OmpR-family response regulator (RR) encoded in the TCS operon was functionally characterized by promoter-binding assays. The RR bound a cis-regulatory element that contained a consensus sequence of a direct repeat (CTATW) separated by 17 bp. Its location either overlapping the -35 box or 50 bp further upstream indicated different regulatory mechanisms. Sequence variations in the regulator binding sites identified in the OHR gene region were in accordance with differences in the transcript levels of the respective gene clusters forming the PCE regulon. The results indicate the presence of a fine-tuned regulatory network controlling PCE metabolism in dehalogenating Sulfurospirillum species, a group of metabolically versatile organohalide-respiring bacteria.


Assuntos
Campylobacteraceae/genética , Campylobacteraceae/metabolismo , Oxirredutases/genética , Tetracloroetileno/metabolismo , Sequência de Bases , Biologia Computacional/métodos , Ensaio de Desvio de Mobilidade Eletroforética , Genoma Bacteriano/genética , Genômica/métodos , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Transcriptoma/genética
13.
Nucleic Acids Res ; 48(16): 9301-9319, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32813020

RESUMO

Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.


Assuntos
Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Pequeno RNA não Traduzido/genética , RNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Ribossomos/genética
14.
Biomolecules ; 10(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784796

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei Gö1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.


Assuntos
Proteínas Associadas a CRISPR/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Methanosarcina/genética , Motivos de Aminoácidos/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica em Archaea/genética , Methanosarcina/química , Methanosarcina/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica/genética , RNA-Seq
15.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744240

RESUMO

Negative feedback regulation, that is the ability of a gene to repress its own synthesis, is the most abundant regulatory motif known to biology. Frequently reported for transcriptional regulators, negative feedback control relies on binding of a transcription factor to its own promoter. Here, we report a novel mechanism for gene autoregulation in bacteria relying on small regulatory RNA (sRNA) and the major endoribonuclease, RNase E. TIER-seq analysis (transiently-inactivating-an-endoribonuclease-followed-by-RNA-seq) revealed ~25,000 RNase E-dependent cleavage sites in Vibrio cholerae, several of which resulted in the accumulation of stable sRNAs. Focusing on two examples, OppZ and CarZ, we discovered that these sRNAs are processed from the 3' untranslated region (3' UTR) of the oppABCDF and carAB operons, respectively, and base-pair with their own transcripts to inhibit translation. For OppZ, this process also triggers Rho-dependent transcription termination. Our data show that sRNAs from 3' UTRs serve as autoregulatory elements allowing negative feedback control at the post-transcriptional level.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/fisiologia , Pequeno RNA não Traduzido/fisiologia , Vibrio cholerae/genética , Endorribonucleases/metabolismo , Retroalimentação Fisiológica , Biossíntese de Proteínas , RNA-Seq , Fator Rho/metabolismo , Regiões Terminadoras Genéticas , Vibrio cholerae/enzimologia
16.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546623

RESUMO

Bacterial ribosome-dependent attenuators are widespread posttranscriptional regulators. They harbor small upstream open reading frames (uORFs) encoding leader peptides, for which no functions in trans are known yet. In the plant symbiont Sinorhizobium meliloti, the tryptophan biosynthesis gene trpE(G) is preceded by the uORF trpL and is regulated by transcription attenuation according to tryptophan availability. However, trpLE(G) transcription is initiated independently of the tryptophan level in S. meliloti, thereby ensuring a largely tryptophan-independent production of the leader peptide peTrpL. Here, we provide evidence for a tryptophan-independent role of peTrpL in trans We found that peTrpL increases the resistance toward tetracycline, erythromycin, chloramphenicol, and the flavonoid genistein, which are substrates of the major multidrug efflux pump SmeAB. Coimmunoprecipitation with a FLAG-peTrpL suggested smeR mRNA, which encodes the transcription repressor of smeABR, as a peptide target. Indeed, upon antibiotic exposure, smeR mRNA was destabilized and smeA stabilized in a peTrpL-dependent manner, showing that peTrpL acts in the differential regulation of smeABR Furthermore, smeR mRNA was coimmunoprecipitated with peTrpL in antibiotic-dependent ribonucleoprotein (ARNP) complexes, which, in addition, contained an antibiotic-induced antisense RNA complementary to smeRIn vitro ARNP reconstitution revealed that the above-mentioned antibiotics and genistein directly support complex formation. A specific region of the antisense RNA was identified as a seed region for ARNP assembly in vitro Altogether, our data show that peTrpL is involved in a mechanism for direct utilization of antimicrobial compounds in posttranscriptional regulation of multiresistance genes. Importantly, this role of peTrpL in resistance is conserved in other AlphaproteobacteriaIMPORTANCE Leader peptides encoded by transcription attenuators are widespread small proteins that are considered nonfunctional in trans We found that the leader peptide peTrpL of the soil-dwelling plant symbiont Sinorhizobium meliloti is required for differential, posttranscriptional regulation of a multidrug resistance operon upon antibiotic exposure. Multiresistance achieved by efflux of different antimicrobial compounds ensures survival and competitiveness in nature and is important from both evolutionary and medical points of view. We show that the leader peptide forms antibiotic- and flavonoid-dependent ribonucleoprotein complexes (ARNPs) for destabilization of smeR mRNA encoding the transcription repressor of the major multidrug resistance operon. The seed region for ARNP assembly was localized in an antisense RNA, whose transcription is induced by antimicrobial compounds. The discovery of ARNP complexes as new players in multiresistance regulation opens new perspectives in understanding bacterial physiology and evolution and potentially provides new targets for antibacterial control.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Sinais Direcionadores de Proteínas , Ribonucleoproteínas/genética , Sinorhizobium meliloti/genética , Triptofano/biossíntese , Antibacterianos/farmacologia , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
JCI Insight ; 5(10)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32434994

RESUMO

Success of DC vaccines relies on the quality of antigen presentation, costimulation, lymph node migration, and the release of IL-12, in case of Th1 priming. Here, we provide evidence for interaction between the injected vaccine DCs with endogenous lymph node-resident DCs for Th1 induction. While migration of the injected DCs was essential for antigen delivery to the lymph node, the injected DCs contributed only partially to Th0 priming and were unable to instruct Th1 generation. Instead, we provide evidence that the lymph node-resident XCR1+ DCs are activated by the injected DCs to present the cognate antigen and release IL-12 for Th1 polarization. The timing of interactions in the draining lymph nodes appeared step-wise as (a) injected DCs with cognate T cells, (b) injected DCs with bystander DCs, and (c) bystander DCs with T cells. The transcriptome of the bystander DCs showed a downregulation of Treg- and Th2/Th9-inducing genes and self-antigen presentation, as well as upregulation of MHC class II and genes required for Th1 instruction. Together, these data show that injected mature lymph node migratory DCs direct T cell priming and bystander DC activation, but not Th1 polarization, which is mediated by endogenous IL-12p70+XCR1+ resident bystander DCs. Our results are of importance for clinical DC-based vaccinations against tumors where endogenous DCs may be functionally impaired by chemotherapy.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Interleucina-12/imunologia , Células Th1/imunologia , Animais , Células Dendríticas/patologia , Camundongos , Receptores de Quimiocinas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th1/patologia , Células Th2/imunologia , Células Th2/patologia
18.
Front Microbiol ; 11: 523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292399

RESUMO

Campylobacter spp. are one of the most important food-borne pathogens, which are quite susceptible to environmental or technological stressors compared to other zoonotic bacteria. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter jejuni are already known, information about the stress response in other Campylobacter species are still scarce. In this study, the stress response of Campylobacter coli and Campylobacter lari to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analysis. None of the strains survived at 46°C for more than 8 h and approximately 20% of the genes of C. coli RM2228 and C. lari RM2100 were differentially expressed. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL, and clpB in both strains, indicating a general involvement in the heat stress response within the Campylobacter species. However, the pronounced differences in the expression pattern between C. coli and C. lari suggest that stress response mechanisms described for one Campylobacter species might be not necessarily transferable to other Campylobacter species.

19.
Exp Cell Res ; 392(2): 112026, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32333908

RESUMO

Mineralization disorders with a broad range of etiological factors represent a huge challenge in dental diagnosis and therapy. Hypophosphatasia (HPP) belongs to the rare diseases affecting predominantly mineralized tissues, bones and teeth, and occurs due to mutations in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). Here we analyzed stem cells from bone marrow (BMSCs), dental pulp (DPSCs) and periodontal ligament (PDLSCs) in the absence and presence of efficient TNAP inhibitors. The differentiation capacity, expression of surface markers, and gene expression patterns of donor-matched dental cells were compared during this in vitro study. Differentiation assays showed efficient osteogenic but low adipogenic differentiation (aD) capacity of PDLSCs and DPSCs. TNAP inhibitor treatment completely abolished the mineralization process during osteogenic differentiation (oD). RNA-seq analysis in PDLSCs, comparing oD with and without TNAP inhibitor levamisole, showed clustered regulation of candidate molecular mechanisms that putatively impaired osteogenesis and mineralization, disequilibrated ECM production and turnover, and propagated inflammation. Combined alteration of cementum formation, mineralization, and elastic attachment of teeth to cementum via elastic fibers may explain dental key problems in HPP. Using this in vitro model of TNAP deficiency in DPSCs and PDLSCs, we provide novel putative target areas for research on molecular cues for specific dental problems in HPP.


Assuntos
Biomarcadores/metabolismo , Polpa Dentária/patologia , Hipofosfatasia/complicações , Células-Tronco Mesenquimais/patologia , Ligamento Periodontal/patologia , Doenças Estomatognáticas/patologia , Adolescente , Adulto , Antirreumáticos/farmacologia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Levamisol/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , RNA-Seq , Doenças Estomatognáticas/etiologia , Doenças Estomatognáticas/metabolismo , Transcriptoma/efeitos dos fármacos , Adulto Jovem
20.
EMBO J ; 39(9): e103852, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227509

RESUMO

RNA-protein interactions are the crucial basis for many steps of bacterial gene expression, including post-transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram-negative bacteria, knowledge about RNA-protein complexes in Gram-positive species remains scarce. Here, we used the Grad-seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in-gradient distributions and subsequent tag-based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram-positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA-based regulation of virulence-relevant pathways.


Assuntos
Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Streptococcus pneumoniae/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA