Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(2): e0100723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206015

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.


Assuntos
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Transcriptoma/genética , Replicação Viral/genética , Perfilação da Expressão Gênica , RNA/metabolismo
2.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790386

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing dataset of the lytic and latent KSHV transcriptome using native RNA and direct cDNA sequencing methods. This was supplemented with CAGE sequencing based on a short-read platform. We also utilized datasets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding, by integrating our data on the viral transcripts with translatomic information from other publications.

3.
Sci Rep ; 13(1): 16395, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773348

RESUMO

Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.


Assuntos
Herpesviridae , Origem de Replicação , Origem de Replicação/genética , Herpesviridae/genética , Transcriptoma , Perfilação da Expressão Gênica , Genômica
4.
Heliyon ; 9(7): e17716, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449092

RESUMO

This study employed both short-read sequencing (SRS, Illumina) and long-read sequencing (LRS Oxford Nanopore Technologies) platforms to conduct a comprehensive analysis of the equid alphaherpesvirus 1 (EHV-1) transcriptome. The study involved the annotation of canonical mRNAs and their transcript variants, encompassing transcription start site (TSS) and transcription end site (TES) isoforms, in addition to alternative splicing forms. Furthermore, the study revealed the presence of numerous non-coding RNA (ncRNA) molecules, including intergenic and antisense transcripts, produced by EHV-1. An intriguing finding was the abundant production of chimeric transcripts, some of which potentially encode fusion polypeptides. Moreover, EHV-1 exhibited a greater incidence of transcriptional overlaps and splicing compared to related viruses. It is noteworthy that many genes have their unique TESs along with the co-terminal transcription ends, a characteristic scarcely seen in other alphaherpesviruses. The study also identified transcripts that overlap the replication origins of the virus. Moreover, a novel ncRNA, referred to as NOIR, was found to intersect with the 5'-ends of longer transcript isoform specified by the major transactivator genes ORF64 and ORF65, surrounding the OriL. These findings together imply the existence of a key regulatory mechanism that governs both transcription and replication through, among others, a process that involves interference between the DNA and RNA synthesis machineries.

5.
Sci Data ; 10(1): 262, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160911

RESUMO

The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.


Assuntos
Mpox , Sequenciamento por Nanoporos , Humanos , DNA Complementar , Perfilação da Expressão Gênica , Transcriptoma
6.
Data Brief ; 43: 108386, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35789906

RESUMO

Long-read sequencing (LRS) approaches shed new light on the complexity of viral (Kakuk et al., 2021 [1]; Boldogkoi et al., 2019 [2]; Depledge et a., 2019 [3]), bacterial (Yan et al., 2018 [4]) and eukaryotic (Tilgner et al., 2014 [5]) transcriptomes. Emerging RNA viruses are zoonotic (Woolhouse et al., 2016 [6]) and create public health problems, e.g. influenza pandemic caused by H1N1 virus in (Fraser et al., 2009 [7]), as well as the current SARS-CoV-2 pandemic (Kim et al., 2020 [8]). In this study, we carried out nanopore sequencing for generating transcriptomic data valuable for structural and kinetic profiling of six important human pathogen RNA viruses, the H1N1 subtype of Influenza A virus (IVA), the Zika virus (ZIKV), the West Nile virus (WNV), the Crimean-Congo hemorrhagic fever virus (CCHFV), the Coxsackievirus [group B serotype 5 (CVB5)] and the Vesicular stomatitis Indiana virus (VSIV), and the response of host cells upon viral infection. The raw sequencing data were filtered during basecalling and only high quality reads (Qscore ≥ 7) were mapped to the appropriate viral and host genomes. Length distribution of sequencing reads were assessed and statistics of data were plotted by the ReadStat.4 python script. The datasets can be used to profile the transcriptomic landscape of RNA viruses, provide information for novel gene annotations, can serve as resource for studying the virus-host interactions, and for the analysis of RNA base modifications. These datasets can be used to compare the different sequencing techniques, library preparation approaches, bioinformatics pipelines, and to analyze the RNA profiles of viruses with small RNA genomes.

7.
Virol J ; 19(1): 7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991630

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is an important human pathogenic gammaherpesvirus with carcinogenic potential. The EBV transcriptome has previously been analyzed using both Illumina-based short read-sequencing and Pacific Biosciences RS II-based long-read sequencing technologies. Since the various sequencing methods have distinct strengths and limitations, the use of multiplatform approaches have proven to be valuable. The aim of this study is to provide a more complete picture on the transcriptomic architecture of EBV. METHODS: In this work, we apply the Oxford Nanopore Technologies MinION (long-read sequencing) platform for the generation of novel transcriptomic data, and integrate these with other's data generated by another LRS approach, Pacific BioSciences RSII sequencing and Illumina CAGE-Seq and Poly(A)-Seq approaches. Both amplified and non-amplified cDNA sequencings were applied for the generation of sequencing reads, including both oligo-d(T) and random oligonucleotide-primed reverse transcription. EBV transcripts are identified and annotated using the LoRTIA software suite developed in our laboratory. RESULTS: This study detected novel genes embedded into longer host genes containing 5'-truncated in-frame open reading frames, which potentially encode N-terminally truncated proteins. We also detected a number of novel non-coding RNAs and transcript length isoforms encoded by the same genes but differing in their start and/or end sites. This study also reports the discovery of novel splice isoforms, many of which may represent altered coding potential, and of novel replication-origin-associated transcripts. Additionally, novel mono- and multigenic transcripts were identified. An intricate meshwork of transcriptional overlaps was revealed. CONCLUSIONS: An integrative approach applying multi-technique sequencing technologies is suitable for reliable identification of complex transcriptomes because each techniques has different advantages and limitations, and the they can be used for the validation of the results obtained by a particular approach.


Assuntos
Infecções por Vírus Epstein-Barr , Transcriptoma , Infecções por Vírus Epstein-Barr/genética , Perfilação da Expressão Gênica , Herpesvirus Humano 4/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Fases de Leitura Aberta
8.
Sci Rep ; 12(1): 1291, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079129

RESUMO

In this study, two long-read sequencing (LRS) techniques, MinION from Oxford Nanopore Technologies and Sequel from the Pacific Biosciences, were used for the transcriptional characterization of a prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus. LRS is able to read full-length RNA molecules, and thereby distinguish between transcript isoforms, mono- and polycistronic RNAs, and overlapping transcripts. Altogether, we detected 875 transcript species, of which 759 were novel and 116 were annotated previously. These RNA molecules include 41 novel putative protein coding transcripts [each containing 5'-truncated in-frame open reading frames (ORFs), 14 monocistronic transcripts, 99 polygenic RNAs, 101 non-coding RNAs, and 504 untranslated region isoforms. This work also identified novel replication origin-associated transcripts, upstream ORFs, cis-regulatory sequences and poly(A) sites. We also detected RNA methylation in 99 viral genes and RNA hyper-editing in the longer 5'-UTR transcript isoform of the canonical ORF 19 transcript.


Assuntos
Baculoviridae/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Isoformas de Proteínas/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Metilação , Nucleopoliedrovírus/genética , Fases de Leitura Aberta , RNA Viral , TATA Box , Regiões não Traduzidas
9.
Acta Biol Hung ; 68(3): 334-344, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28901803

RESUMO

Despite the current therapeutic options, filamentous fungal infections are associated with high mortality rate especially in immunocompromised patients. In order to find a new potential therapeutic approach, the in vitro inhibitory effect of two antiarrhythmic agents, diltiazem and verapamil hydrochloride were tested against different clinical isolates of ascomycetous and mucoralean filamentous fungi. The in vitro combinations of these non-antifungal drugs with azole and polyene antifungal agents were also examined. Susceptibility tests were carried out using the broth microdilution method according to the instructions of the Clinical and Laboratory Standards Institute document M38-A2. Checkerboard microdilution assay was used to assess the interactions between antifungal and non-antifungal drugs. Compared to antifungal agents, diltiazem and verapamil hydrochloride exerted a relatively low antifungal activity with high minimal inhibitory concentration values (853-2731 µg/ml). Although in combination they could increase the antifungal activity of amphotericin B, itraconazole and voriconazole. Indifferent and synergistic interactions were registered in 33 and 17 cases, respectively. Antagonistic interactions were not revealed between the investigated compounds. However, the observed high MICs suggest that these agents could not be considered as alternative systemic antifungal agents.


Assuntos
Antifúngicos/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungos/fisiologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA