RESUMO
Intracellular processes triggered by neural activity include changes in ionic concentrations, protein release, and synaptic vesicle cycling. These processes play significant roles in neurological disorders. The beneficial effects of brain stimulation may also be mediated through intracellular changes. There is a lack of label-free techniques for monitoring activity-dependent intracellular changes. Electromagnetic (EM) waves at frequencies larger than 1 × 106 Hz (1 MHz) were previously used to probe intracellular contents of cells, as cell membrane becomes "invisible" at this frequency range. EM waves interact with membranes of intracellular organelles, proteins, and water in the MHz - GHz range. In this work, we developed a device for probing the interaction between active neurons' intracellular contents and EM waves. The device used an array of grounded coplanar waveguides (GCPWs) to deliver EM waves to a three-dimensional (3D) spheroid of rat cortical neurons. Neural activity was evoked using optogenetics, with synchronous detection of propagation of EM waves. Broadband measurements were conducted in the MHz-GHz range to track changes in transmission coefficients. Neuronal activity was found to reversibly alter EM wave transmission. Pharmacological suppression of neuronal activity abolished changes in transmission. Time constants of changes in transmission were in the seconds - tens of seconds range, suggesting the presence of relatively slow, activity-dependent intracellular processes. This study provides the first evidence that EM transmission through neuronal tissue is activity-dependent in MHz - GHz range. Device developed in this work may find future applications in studies of the mechanisms of neurological disorders and the development of new therapies.
RESUMO
Scanning microwave microscopy (SMM) is a novel metrological tool that advances the quantitative, nanometric, high-frequency, electrical characterization of a broad range of materials of technological importance. In this work, we report an inverted near-field scanning microwave microscopy (iSMM) investigation of a graphene oxide-based epoxy nanocomposite material at a nanoscopic level. The high-resolution spatial mapping of local conductance provides a quantitative analysis of the sample's electrical properties. In particular, the electrical conductivity in the order of â¼10-1 S/m as well as the mapping of the dielectric constant with a value of â¼4.7 ± 0.2 are reported and validated by the full-wave electromagnetic modeling of the tip-sample interaction.
RESUMO
The present paper describes a novel implementation of the continuous phase shifting method (PSM), named heterodyne holography, in a scanning probe microscope configuration, able to retrieve the complex scattered field in on-axis configuration. This can be achieved by acquiring a continuous sequence of holograms at different wavelengths in just a single scan through the combination of scanning interference microscopy and a low-coherent signal acquired in the frequency domain. This method exploits the main advantages of the phase shifting technique and avoids some limits relative to off-axis holography in providing quantitative phase imaging.
RESUMO
Scanning microwave microscopy (SMM) is based on the interaction between a sample and an electromagnetic evanescent field, in the microwave frequency range. SMM is usually coupled with a scanning probe microscopy (SPM) technique such as in our case, a scanning tunneling microscope (STM). In this way, the STM tip is used to control the distance between the probe and the sample while acting as an antenna for the microwave field. Thanks to the peculiarity of our home-made setup, the SMM is a suitable method to study blisters formed on HOPG surface as consequence of an electrochemical treatment. Our system has a "broad-band" approach that opens the way to perform local microwave spectroscopy over a broad frequency range. Moreover, microwaves have the ability to penetrate into the sample allowing the sub-surface characterization of materials. The application of the SMM to characterize blisters formed on the HOPG surface provides information on the sub-layer structures.