Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788213

RESUMO

Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.


Assuntos
Oomicetos , Rizosfera , Bacillus subtilis , Pseudomonas/genética
2.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33257523

RESUMO

Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.


Assuntos
Proteínas de Bactérias/genética , Genes Essenciais , Pseudomonas/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Biblioteca Gênica , Genoma Bacteriano , Mutagênese Insercional , Plantas/microbiologia , Pseudomonas/metabolismo
3.
Front Plant Sci ; 11: 291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256512

RESUMO

Many plant-associated bacteria have the ability to positively affect plant growth and there is growing interest in utilizing such bacteria in agricultural settings to reduce reliance on pesticides and fertilizers. However, our capacity to utilize microbes in this way is currently limited due to patchy understanding of bacterial-plant interactions at a molecular level. Traditional methods of studying molecular interactions have sought to characterize the function of one gene at a time, but the slow pace of this work means the functions of the vast majority of bacterial genes remain unknown or poorly understood. New approaches to improve and speed up investigations into the functions of bacterial genes in agricultural systems will facilitate efforts to optimize microbial communities and develop microbe-based products. Techniques enabling high-throughput gene functional analysis, such as transposon insertion sequencing analyses, have great potential to be widely applied to determine key aspects of plant-bacterial interactions. Transposon insertion sequencing combines saturation transposon mutagenesis and high-throughput sequencing to simultaneously investigate the function of all the non-essential genes in a bacterial genome. This technique can be used for both in vitro and in vivo studies to identify genes involved in microbe-plant interactions, stress tolerance and pathogen virulence. The information provided by such investigations will rapidly accelerate the rate of bacterial gene functional determination and provide insights into the genes and pathways that underlie biotic interactions, metabolism, and survival of agriculturally relevant bacteria. This knowledge could be used to select the most appropriate plant growth promoting bacteria for a specific set of conditions, formulating crop inoculants, or developing crop protection products. This review provides an overview of transposon insertion sequencing, outlines how this approach has been applied to study plant-associated bacteria, and proposes new applications of these techniques for the benefit of agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA