Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293434

RESUMO

The reduction of O2 in respiratory cytochrome c oxidases (CcO) is associated with the generation of the transmembrane proton gradient by two mechanisms. In one of them, the proton pumping, two different types of the ferryl intermediates of the catalytic heme a3-CuB center P and F forms, participate. Equivalent ferryl states can be also formed by the reaction of the oxidized CcO (O) with H2O2. Interestingly, in acidic solutions a single molecule of H2O2 can generate from the O an additional F-type ferryl form (F•) that should contain, in contrast to the catalytic F intermediate, a free radical at the heme a3-CuB center. In this work, the formation and the endogenous decay of both the ferryl iron of heme a3 and the radical in F• intermediate were examined by the combination of four experimental approaches, isothermal titration calorimetry, electron paramagnetic resonance, and electronic absorption spectroscopy together with the reduction of this form by the defined number of electrons. The results are consistent with the generation of radicals in F• form. However, the radical at the catalytic center is more rapidly quenched than the accompanying ferryl state of heme a3, very likely by the intrinsic oxidation of the enzyme itself.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Peróxidos , Bovinos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxidos/química , Prótons , Peróxido de Hidrogênio/química , Citocromos c , Oxirredução , Heme/metabolismo
2.
Biochemistry (Mosc) ; 86(1): 74-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33705283

RESUMO

Several ferryl states of the catalytic heme a3-CuB center of the respiratory cytochrome c oxidases (CcOs) are observed during the reduction of O2 to H2O. One of the P-type ferryl forms, PM, is produced by the reaction of the two-electron reduced CcO with O2. In this state, the heme a3 iron is in the ferryl state and a free radical should be also present at the catalytic center. However, the energetics of the PM formation has not been experimentally established yet. Here, the generation of PM by the reaction of oxidized bovine CcO (O) with one molecule of H2O2 was investigated by the isothermal titration calorimetry and UV-Vis absorption spectroscopy. Two kinetic phases, corresponding to the formation of PM and its endogenous conversion back to O, were resolved by both methods. The ΔH of the entire process (-66 kcal/mol H2O2) was larger than the heat (-50.8 kcal/mol O2) liberated during O2 reduction by ferrocytochrome c (pH 8, 25°C). Interestingly, ΔH of the first phase (-32 kcal/mol ferryl state) far exceeds the enthalpy of the PM production. The data indicate that during the first phase, the radical in PM is quenched and spectrally similar second P-type ferryl form (PR) is produced. Additionally, it was shown that the entropy contribution to the Gibbs energy change (ΔG = -46 kcal/mol O2) during the catalytic reduction of O2 by ferrocytochrome c is negligible (-0.7 cal·mol-1·K-1).


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Termodinâmica , Animais , Bovinos , Citocromos c , Complexo IV da Cadeia de Transporte de Elétrons/química , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Análise Espectral
3.
Biochim Biophys Acta Bioenerg ; 1861(9): 148237, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485159

RESUMO

Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+-CuB2+ center on the electron-proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN- and the formate-ligated CcO with slopes of -13 mV/pH unit and -23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron-proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron-proton coupling at the physiological pH values is also substantiated by the UV-Vis absorption and electron-paramagnetic resonance spectroscopy investigations of the cyanide-ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His-Fea3+-His and His-Fea3+-OH- occurs only at pH above 9.5 with the estimated pK >11.0.


Assuntos
Domínio Catalítico , Citocromos a/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Prótons , Animais , Biocatálise , Bovinos , Transporte de Elétrons , Oxirredução
4.
Biochemistry ; 57(28): 4105-4113, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29901388

RESUMO

Second-derivative absorption spectroscopy was employed to monitor the response of effective symmetry of cytochromes a and a3 to the redox and ligation states of bovine cytochrome c oxidase (CcO). The Soret band π → π* electronic transitions were used to display the changes in symmetry of these chromophores induced by the reduction of CcO inhibited by the exogenous ligands and during catalytic turnover. The second derivative of the difference absorption spectra revealed only a single Soret band for the oxidized cytochromes a and a3 and cyanide-ligated oxidized cytochrome a3. In contrast, two absorption bands were resolved in ferrous cytochrome a and ferrous cytochrome a3 ligated with cyanide. A transition from one-band spectrum to two-band spectrum indicates the lowering of symmetry of these hemes due to the alteration of their immediate surroundings. It is suggested that the changes in polarity occurring in the vicinity of these cofactors are main reason for the split of the Soret band of both ferrous cytochrome a and cyanide-bound ferrous cytochrome a3.


Assuntos
Citocromos a3/metabolismo , Citocromos a/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Animais , Bovinos , Cianetos/química , Cianetos/metabolismo , Citocromos a/química , Citocromos a3/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Elétrons , Heme/química , Oxirredução
5.
J Mol Biol ; 428(6): 1107-1129, 2016 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25687963

RESUMO

Staphylococcus aureus is a medically important bacterial pathogen that, during infections, acquires iron from human hemoglobin (Hb). It uses two closely related iron-regulated surface determinant (Isd) proteins to capture and extract the oxidized form of heme (hemin) from Hb, IsdH and IsdB. Both receptors rapidly extract hemin using a conserved tri-domain unit consisting of two NEAT (near iron transporter) domains connected by a helical linker domain. To gain insight into the mechanism of extraction, we used NMR to investigate the structure and dynamics of the 38.8-kDa tri-domain IsdH protein (IsdH(N2N3), A326-D660 with a Y642A mutation that prevents hemin binding). The structure was modeled using long-range paramagnetic relaxation enhancement (PRE) distance restraints, dihedral angle, small-angle X-ray scattering, residual dipolar coupling and inter-domain NOE nuclear Overhauser effect data. The receptor adopts an extended conformation wherein the linker and N3 domains pack against each other via a hydrophobic interface. In contrast, the N2 domain contacts the linker domain via a hydrophilic interface and, based on NMR relaxation data, undergoes inter-domain motions enabling it to reorient with respect to the body of the protein. Ensemble calculations were used to estimate the range of N2 domain positions compatible with the PRE data. A comparison of the Hb-free and Hb-bound forms reveals that Hb binding alters the positioning of the N2 domain. We propose that binding occurs through a combination of conformational selection and induced-fit mechanisms that may promote hemin release from Hb by altering the position of its F helix.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Hemoglobinas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
6.
Biochemistry ; 53(22): 3564-75, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24840065

RESUMO

In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Animais , Catálise , Bovinos , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo , Peróxidos/química
7.
J Hazard Mater ; 260: 434-41, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23811364

RESUMO

This study investigates the photocatalytic efficiency, type of reactive oxygen species (ROS) produced, and potential for structural and morphological modification of anodic TiO2 nanotubes (NTs) synthesized using a novel, energy efficient, low temperature crystallization process. These TiO2 NTs show greater photocatalytic efficiency than traditional high-temperature sintered NTs or supported Degussa P25 TiO2, as measured by degradation of methyl orange, a model organic dye pollutant. EPR analysis shows that low-temperature crystallized TiO2 NTs generate both hydroxyl radicals and singlet oxygen, while high-temperature sintered TiO2 NTs generate primarily hydroxyl radicals but no singlet oxygen. This "cocktail" of reactive oxygen species, combined with an increased surface area, contributes to the increased efficiency of this photocatalytic material. Furthermore, variation of the NT crystallization parameters enables control of structural and morphological properties so that TiO2-NTs can be optimized for scale-up and for specific treatment scenarios.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Espécies Reativas de Oxigênio/química , Titânio/química , Compostos Azo/química , Catálise , Cristalização , Espectroscopia de Ressonância de Spin Eletrônica , Química Verde , Substâncias Perigosas , Radical Hidroxila , Teste de Materiais , Processos Fotoquímicos , Oxigênio Singlete , Temperatura , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
8.
J Biol Inorg Chem ; 18(1): 137-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160757

RESUMO

The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Heme/análogos & derivados , Peroxidação de Lipídeos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Bovinos , Heme/metabolismo , Cinética , Oxirredução , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
9.
PLoS Pathog ; 8(3): e1002559, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412371

RESUMO

To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3(10)-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3(10)-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands.


Assuntos
Bacillus anthracis/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Sequência de Aminoácidos , Antraz , Bacillus anthracis/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Heme/química , Hemoglobinas/química , Ferro/química , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
J Biol Chem ; 286(38): 33652-60, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21808055

RESUMO

Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extensive, and efficient replication of B. anthracis in host tissues makes this pathogen an excellent model organism for the study of bacterial heme acquisition. B. anthracis secretes two NEAT hemophores, IsdX1 and IsdX2. IsdX1 contains a single NEAT domain, whereas IsdX2 has five, a novel property among hemophores. To understand the functional significance of harboring multiple, non-identical NEAT domains, we purified each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport. NEAT domains 1, 3, 4, and 5 all bind heme, with domain 5 having the highest affinity. All NEATs associate with hemoglobin, but only NEAT1 and -5 can extract heme from hemoglobin, seemingly by a specific and active process. NEAT1, -3, and -4 transfer heme to IsdC, a cell wall-anchored anthrax NEAT protein. These results indicate that IsdX2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall. Additionally, these results suggest that IsdX2 may accelerate iron import rates by acting as a "heme sponge" that enhances B. anthracis replication in iron-starved environments.


Assuntos
Antraz/metabolismo , Bacillus anthracis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/isolamento & purificação , Bovinos , Biologia Computacional , Cinética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
11.
Biophys Chem ; 152(1-3): 1-14, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20933319

RESUMO

The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called "pentacoordinate" hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called "hexacoordinate hemoglobins", which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal.


Assuntos
Globinas/química , Animais , Citoglobina , Globinas/classificação , Globinas/metabolismo , Hemoglobinas/química , Hemoglobinas/classificação , Hemoglobinas/metabolismo , Histidina/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Estrutura Terciária de Proteína
12.
Free Radic Biol Med ; 49(10): 1574-81, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20801213

RESUMO

An excess of ferricytochrome c protects purified mitochondrial cytochrome c oxidase and bound cardiolipin from hydrogen peroxide-induced oxidative modification. All of the peroxide-induced changes within cytochrome c oxidase, such as oxidation of Trp(19,IV) and Trp(48,VIIc), partial dissociation of subunits VIa and VIIa, and generation of cardiolipin hydroperoxide, no longer take place in the presence of ferricytochrome c. Furthermore, ferricytochrome c suppresses the yield of H(2)O(2)-induced free radical detectable by electron paramagnetic resonance spectroscopy within cytochrome c oxidase. These protective effects are based on two mechanisms. The first involves the peroxidase/catalase-like activity of ferricytochrome c, which results in the decomposition of H(2)O(2), with the apparent bimolecular rate constant of 5.1±1.0M(-1)s(-1). Although this value is lower than the rate constant of a specialized peroxidase, the activity is sufficient to eliminate H(2)O(2)-induced damage to cytochrome c oxidase in the presence of an excess of ferricytochrome c. The second mechanism involves ferricytochrome c-induced quenching of free radicals generated within cytochrome c oxidase. These results suggest that ferricytochrome c may have an important role in protection of cytochrome c oxidase and consequently the mitochondrion against oxidative damage.


Assuntos
Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Peróxido de Hidrogênio/química , Animais , Cardiolipinas/metabolismo , Bovinos , Citocromos c/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Radicais Livres/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miocárdio/enzimologia , Oxirredução
13.
Biochemistry ; 49(31): 6587-99, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20572679

RESUMO

Nostoc sp. (Ns) H-NOX is a heme protein found in symbiotic cyanobacteria, which has approximately 35% sequence identity and high structural homology to the beta subunit of soluble guanylyl cyclase (sGC), suggesting a NO sensing function. However, UV-vis, EPR, NIR MCD, and ligand binding experiments with ferrous and ferric Ns H-NOX indicate significant functional differences between Ns H-NOX and sGC. (1) After NO binding to sGC, the proximal histidine dissociates from the heme iron, causing a conformational change that triggers activation of sGC. In contrast, formation of pentacoordinate (5c) NO heme occurs to only a limited extent in Ns H-NOX, even at >1 mM NO. (2) Unlike sGC, two different hexacoordinate (6c) NO complexes are formed in Ns H-NOX with initial and final absorbance peaks at 418 and 414 nm, and the conversion rate is linearly dependent on [NO], indicating that a second NO binds transiently to catalyze formation of the 414 nm species. (3) sGC is insensitive to oxygen, and ferric sGC prepared by ferricyanide oxidation has a 5c high-spin heme complex. In contrast, Ns H-NOX autoxidizes in 24 h if exposed to air and forms a 6c ferric heme complex, indicating a major conformational change after oxidation and coordination by a second histidine side chain. Such a large conformational transition suggests that Ns H-NOX could function as either a redox or a NO sensor in the cyanobacterium.


Assuntos
NADH NADPH Oxirredutases/fisiologia , Óxido Nítrico/metabolismo , Nostoc/enzimologia , Cianobactérias , Guanilato Ciclase/metabolismo , Guanilato Ciclase/fisiologia , NADH NADPH Oxirredutases/metabolismo , Nostoc/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Homologia de Sequência de Aminoácidos , Guanilil Ciclase Solúvel , Análise Espectral , Homologia Estrutural de Proteína
14.
J Bacteriol ; 192(13): 3503-11, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20435727

RESUMO

The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Sequência de Aminoácidos , Bacillus anthracis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Ligação Proteica , Ressonância de Plasmônio de Superfície
15.
Biochemistry ; 49(13): 2834-42, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20180543

RESUMO

The heme-binding proteins Shp and HtsA of Streptococcus pyogenes are part of the heme acquisition machinery in which Shp directly transfers its heme to HtsA. Mutagenesis and spectroscopic analyses were performed to identify the heme axial ligands in HtsA and to characterize axial mutants of HtsA. Replacements of the M79 and H229 residues, not the other methionine and histidine residues, with alanine convert UV-vis spectra of HtsA with a low-spin, hexacoordinate heme iron into spectra of high-spin heme complexes. Ferrous M79A and H229A HtsA mutants possess magnetic circular dichroism (MCD) spectra that are similar with those of proteins with pentacoordinate heme iron. Ferric M79A HtsA displays UV-vis, MCD, and resonance Raman (RR) spectra that are typical of a hexacoordinate heme iron with histidine and water ligands. In contrast, ferric H229A HtsA has UV-vis, MCD, and RR spectra that represent a pentacoordinate heme iron complex with a methionine axial ligand. Imidazole readily forms a low-spin hexacoordinate adduct with M79A HtsA with a K(d) of 40.9 muM but not with H229A HtsA, and cyanide binds to M79A and H229A with K(d) of 0.5 and 19.1 microM, respectively. The ferrous mutants rapidly bind CO and form simple CO complexes. These results establish the H229 and M79 residues as the axial ligands of the HtsA heme iron, indicate that the M79 side is more accessible to the solvent than the H229 side of the bound heme in HtsA, and provide unique spectral features for a protein with pentacoordinate, methionine-ligated heme iron. These findings will facilitate elucidation of the molecular mechanism and structural basis for rapid and direct heme transfer from Shp to HtsA.


Assuntos
Proteínas de Transporte/química , Heme/metabolismo , Hemeproteínas/química , Streptococcus pyogenes/química , Proteínas de Bactérias , Monóxido de Carbono/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Hemeproteínas/metabolismo , Ligantes , Mutação de Sentido Incorreto , Análise Espectral
16.
J Biol Chem ; 285(7): 4536-43, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20037139

RESUMO

Cytochrome c oxidase is a member of the heme-copper family of oxygen reductases in which electron transfer is linked to the pumping of protons across the membrane. Neither the redox center(s) associated with proton pumping nor the pumping mechanism presumably common to all heme-copper oxidases has been established. A possible conformational coupling between the catalytic center (Fe(a3)(3+)-Cu(B)(2+)) and a protein site has been identified earlier from ligand binding studies, whereas a structural change initiated by azide binding to the protein has been proposed to facilitate the access of cyanide to the catalytic center of the oxidized bovine enzyme. Here we show that cytochrome oxidase pretreated with a low concentration of azide exhibits a significant increase in the apparent rate of cyanide binding relative to that of free enzyme. However, this increase in rate does not reflect a conformational change enhancing the rapid formation of a Fe(a3)(3+)-CN-Cu(B)(2+) complex. Instead the cyanide-induced transition of a preformed Fe(a3)(3+)-N(3)-Cu(B)(2+) to the ternary complex of Fe(a3)(3+)-N(3) Cu(B)(2+)-CN is the most likely reason for the observed acceleration. Significantly, the slow rate of azide release from the ternary complex indicates that cyanide ligated to Cu(B) blocks a channel between the catalytic site and the solvent. The results suggest that there is a pathway that originates at Cu(B) and that, during catalysis, ligands present at this copper center control access to the iron of heme a(3) from the bulk medium.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ligantes , Animais , Azidas/metabolismo , Catálise , Bovinos , Cianetos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Heme/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Biol Chem ; 284(46): 32138-46, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19759022

RESUMO

To initiate and sustain an infection in mammals, bacterial pathogens must acquire host iron. However, the host's compartmentalization of large amounts of iron in heme, which is bound primarily by hemoglobin in red blood cells, acts as a barrier to bacterial iron assimilation. Bacillus anthracis, the causative agent of the disease anthrax, secretes two NEAT (near iron transporter) proteins, IsdX1 and IsdX2, which scavenge heme from host hemoglobin and promote growth under low iron conditions. The mechanism of heme transfer from these hemophores to the bacterial cell is not known. We present evidence that the heme-bound form of IsdX1 rapidly and directionally transfers heme to IsdC, a NEAT protein covalently attached to the cell wall, as well as to IsdX2. In both cases, the transfer of heme is mediated by a physical association between the donor and recipient. Unlike Staphylococcus aureus, whose NEAT proteins acquire heme from hemoglobin directly at the bacterial surface, B. anthracis secretes IsdX1 to capture heme in the extracellular milieu and relies on NEAT-NEAT interactions to deliver the bound heme to the envelope via IsdC. Understanding the mechanism of NEAT-mediated iron transport into pathogenic Gram-positive bacteria may provide an avenue for the development of therapeutics to combat infection.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Antraz/genética , Antraz/metabolismo , Proteínas de Bactérias/isolamento & purificação , Cromatografia de Afinidade , Heme/química , Ferro/química
18.
Biophys Chem ; 144(1-2): 21-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19545938

RESUMO

Effect of anions of the Hofmeister series (thiocyanate, perchlorate, iodide, bromide, nitrate, chloride, sulfate, and phosphate) on local and global stability and flexibility of horse heart ferricytochrome c (cyt c) has been studied. Global stability of cyt c was determined by iso/thermal denaturations monitored by change in ellipticity in the far-UV region and its local stability was determined from absorbance changes in the Soret region. Particularly, relative stability/flexibility of the Met80-heme iron bond has been assessed by analysis of binding of cyanide into the heme iron. Both global and local stabilities of cyt c exhibited monotonous increase induced by a change of anion from chaotropic to kosmotropic species. However, this monotonous dependence was not observed for the rate constants of cyanide association with cyt c. As expected more chaotropic ions induced lower stability of protein and faster binding of cyanide but this correlation was reversed for kosmotropic anions. We propose that the unusual bell-shaped dependence of the rate constant of cyanide association is a result of modulation of Met80-heme iron bond strength and/or flexibility of heme region by Hofmeister anions independently on global stability of cyt c. Further, our results demonstrate sensitivity of cyanide binding to local change in stability/flexibility in the heme region of cyt c.


Assuntos
Cianetos/química , Citocromos c/química , Animais , Dicroísmo Circular , Heme/química , Cavalos , Ferro/química , Cinética , Ligação Proteica , Termodinâmica
19.
J Biol Chem ; 283(26): 18450-60, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18467329

RESUMO

The iron-regulated surface proteins IsdA, IsdB, and IsdC and transporter IsdDEF of Staphylococcus aureus are involved in heme acquisition. To establish an experimental model of heme acquisition by this system, we have investigated hemin transfer between the various couples of human methemoglobin (metHb), IsdA, IsdB, IsdC, and IsdE by spectroscopic and kinetic analyses. The efficiencies of hemin transfer from hemin-containing donors (holo-protein) to different hemin-free acceptors (apo-protein) were examined, and the rates of the transfer reactions were compared with that of indirect loss of hemin from the relevant donor to H64Y/V68F apomyoglobin. The efficiencies, spectral changes, and kinetics of the transfer reactions demonstrate that: 1) metHb directly transfers hemin to apo-IsdB, but not to apo-IsdA, apo-IsdC, and apo-IsdE; 2) holo-IsdB directly transfers hemin to apo-IsdA and apo-IsdC, but not to apo-IsdE; 3) apo-IsdE directly acquires hemin from holo-IsdC, but not from holo-IsdB and holo-IsdA; and 4) IsdB and IsdC enhance hemin transfer from metHb to apo-IsdC and from holo-IsdB to apo-IsdE, respectively. Taken together with our recent finding that holo-IsdA directly transfers its hemin to apo-IsdC, these results provide direct experimental evidence for a model in which IsdB acquires hemin from metHb and transfers it directly or through IsdA to IsdC. Hemin is then relayed to IsdE, the lipoprotein component of the IsdDEF transporter.


Assuntos
Regulação da Expressão Gênica , Heme/farmacocinética , Ferro/metabolismo , Metemoglobina/metabolismo , Staphylococcus aureus/metabolismo , Transporte Biológico , Clonagem Molecular , Hemina/química , Humanos , Cinética , Metemoglobina/química , Modelos Biológicos , Mioglobina/química , Proteínas Recombinantes/química , Infecções Estafilocócicas/metabolismo , Propriedades de Superfície
20.
Biochemistry ; 46(50): 14610-8, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18027981

RESUMO

The first step in the catalytic cycle of cytochrome oxidase, the one-electron reduction of the fully oxidized enzyme, was investigated using a new photoactive binuclear ruthenium complex, [Ru(bipyrazine)2]2(quaterpyridine), (Ru2Z). The aim of the work was to examine differences in the redox kinetics resulting from pulsing the oxidase (i.e., fully reducing the enzyme followed by reoxidation) just prior to photoreduction. Recent reports indicate transient changes in the redox behavior of the metal centers upon pulsing. The new photoreductant has a large quantum yield, allowing the kinetics data to be acquired in a single flash. The net charge of +4 on Ru2Z allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. The photoexcited state Ru(II*) of Ru2Z is reduced to Ru(I) by the sacrificial electron donor aniline, and Ru(I) then reduces CuA with yields up to 60%. A stopped-flow-flash technique was used to form the pulsed state of cytochrome oxidase (the "OH" state) from several sources (bovine heart mitochondria, Rhodobacter sphaeroides, and Paracoccus denitrificans). Upon mixing the fully reduced anaerobic enzyme with oxygenated buffer containing Ru2Z, the oxidized OH state was formed within 5 ms. Ru2Z was then excited with a laser flash to inject one electron into CuA. Electron transfer from CuA --> heme a --> heme a3/CuB was monitored by optical spectroscopy, and the results were compared with the enzyme that had not been pulsed to the OH state. Pulsing had a significant effect in the case of the bovine oxidase, but this was not observed with the bacterial oxidases. Electron transfer from CuA to heme a occurred with a rate constant of 20,000 s-1 with the bovine cytochrome oxidase, regardless of whether the enzyme had been pulsed. However, electron transfer from heme a to the heme a3/CuB center in the pulsed form was 63% complete and occurred with biphasic kinetics with rate constants of 750 s-1 and 110 s-1 and relative amplitudes of 25% and 75%. In contrast, one-electron injection into the nonpulsed O form of the bovine oxidase was only 30% complete and occurred with monophasic kinetics with a rate constant of 90 s-1. This is the first indication of a difference between the fast form of the bovine oxidase and the pulsed OH form. No reduction of heme a3 is observed, indicating that CuB is the initial electron acceptor in the one-electron reduced pulsed bovine oxidase.


Assuntos
Detergentes/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Rutênio/química , Animais , Bovinos , Detergentes/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Rutênio/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA