Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247871

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes responsible for linking a transfer RNA (tRNA) with its cognate amino acid present in all the kingdoms of life. Besides their aminoacyl-tRNA synthetase activity, it was described that many of these enzymes can carry out non-canonical functions. They were shown to be involved in important biological processes such as metabolism, immunity, development, angiogenesis and tumorigenesis. In the present work, we provide evidence that tryptophanyl-tRNA synthetase might be involved in a negative feedback loop mitigating the expression of certain interferon-γ-induced genes. Mining the available TCGA and Gtex data, we found that WARS was highly expressed in cutaneous melanoma (SKCM) compared to other cancers and is of good prognosis for this particular cancer type. WARS expression correlates with genes involved in antigen processing and presentation but also transcription factors involved in IFN-γ signaling such as STAT1. In addition, WARS was found in complex with STAT1 in A375 cells treated with IFN-γ. Finally, we showed that knocking down WARS expression during IFN-γ stimulation further increases the expression of GBP2, APOL1, ISG15, HLA-A and IDO1.


Assuntos
Aminoacil-tRNA Sintetases , Melanoma , Neoplasias Cutâneas , Triptofano-tRNA Ligase , Humanos , Triptofano-tRNA Ligase/genética , Interferon gama/farmacologia , Retroalimentação , Melanoma/genética , RNA de Transferência , Expressão Gênica , Apolipoproteína L1
2.
Mol Cell ; 83(18): 3333-3346.e5, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738964

RESUMO

The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.


Assuntos
Aminoácidos Aromáticos , Complexo de Endopeptidases do Proteassoma , Sobrevivência Celular , Aminoácidos , Serina-Treonina Quinases TOR/genética
3.
Nat Commun ; 14(1): 254, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650156

RESUMO

The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes. External application of synthetic peptides increases the abundance of the targeted protein, leading to related phenotypes. Moreover, we provide evidence that cPEPs can be powerful tools in agronomy to improve plant traits, such as growth, resistance to pathogen or heat stress, without the needs of genetic approaches. Finally, by combining their activity they can also be used to reduce weed growth.


Assuntos
Agroquímicos , Controle de Plantas Daninhas , Agroquímicos/farmacologia , Resistência a Herbicidas/genética , Plantas Daninhas/genética , Peptídeos , Produtos Agrícolas/genética
4.
Front Cell Dev Biol ; 10: 901351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721519

RESUMO

Recent studies have shown that hundreds of small proteins were occulted when protein-coding genes were annotated. These proteins, called alternative proteins, have failed to be annotated notably due to the short length of their open reading frame (less than 100 codons) or the enforced rule establishing that messenger RNAs (mRNAs) are monocistronic. Several alternative proteins were shown to be biologically active molecules and seem to be involved in a wide range of biological functions. However, genome-wide exploration of the alternative proteome is still limited to a few species. In the present article, we describe a deep peptidomics workflow which enabled the identification of 401 alternative proteins in Drosophila melanogaster. Subcellular localization, protein domains, and short linear motifs were predicted for 235 of the alternative proteins identified and point toward specific functions of these small proteins. Several alternative proteins had approximated abundances higher than their canonical counterparts, suggesting that these alternative proteins are actually the main products of their corresponding genes. Finally, we observed 14 alternative proteins with developmentally regulated expression patterns and 10 induced upon the heat-shock treatment of embryos, demonstrating stage or stress-specific production of alternative proteins.

5.
FEBS Lett ; 596(11): 1468-1480, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35561126

RESUMO

Arginyl-tRNA-protein transferase 1 (ATE1) catalyses N-terminal protein arginylation, a post-translational modification implicated in cell migration, invasion and the cellular stress response. Herein, we report that ATE1 is overexpressed in NRAS-mutant melanomas, while it is downregulated in BRAF-mutant melanomas. ATE1 expression was higher in metastatic tumours, compared with primary tumours. Consistent with these findings, ATE1 depletion reduced melanoma cell viability, migration and colony formation. Reduced ATE1 expression also affected cell responses to mTOR and MEK inhibitors and to serum deprivation. Among putative ATE1 substrates is the tumour suppressor AXIN1, pointing to the possibility that ATE1 may fine-tune AXIN1 function in melanoma. Our findings highlight an unexpected role for ATE1 in melanoma cell aggressiveness and suggest that ATE1 constitutes a potential new therapeutic target.


Assuntos
Aminoaciltransferases , Melanoma , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Melanoma/genética , Processamento de Proteína Pós-Traducional , RNA de Transferência/metabolismo
6.
Nat Commun ; 12(1): 5397, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518534

RESUMO

Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.


Assuntos
Predisposição Genética para Doença/genética , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide/genética , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Doença Aguda , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células U937 , Ubiquitina-Proteína Ligases/metabolismo
7.
Curr Opin Chem Biol ; 60: 122-130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401134

RESUMO

Short open reading frame (sORF)-encoded polypeptides (SEPs) have recently emerged as key regulators of major cellular processes. Computational methods for the annotation of sORFs combined with transcriptomics and ribosome profiling approaches predicted the existence of tens of thousands of SEPs across the kingdom of life. Although, we still lack unambiguous evidence for most of them. The method of choice to validate the expression of SEPs is mass spectrometry (MS)-based peptidomics. Peptides are less abundant than proteins, which tends to hinder their detection. Therefore, optimization and enrichment methods are necessary to validate the existence of SEPs. In this article, we discuss the challenges for the detection of SEPs by MS and recent developments of biochemical approaches applied to the study of these peptides. We detail the advances made in the different key steps of a typical peptidomics workflow and highlight possible alternatives that have not been explored yet.


Assuntos
Espectrometria de Massas , Fases de Leitura Aberta/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteômica/métodos , Fluxo de Trabalho
8.
Biochem Biophys Res Commun ; 558: 224-230, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32933748

RESUMO

The NF-κB transcription factor is involved in inflammation and cell proliferation, survival, and transformation. It is a heterodimer made of p50 or p52 and a member of the Rel family of proteins. p50 and p52 are derived from limited ubiquitin- and proteasome-mediated proteolytic processing of the larger precursors p105 and p100, respectively. Both precursors can be either processed or completely degraded by the ubiquitin-proteasome system. Previous work in our laboratory identified KPC1 as a ubiquitin ligase that mediates processing of p105 to the p50 subunit. Overexpression of the ligase leads to increased level of p50 with a resultant marked tumor-suppressive effect. In the present study, we identify FBXO7, a known ubiquitin ligase that binds to p105 and ubiquitinates it, but surprisingly, leads to its accumulation and to that of p65 - the Rel partner of p50 - and to increased cell proliferation. Importantly, a ΔF-Box mutant of FBXO7 which is inactive has similar effects on accumulation of p105 and cell proliferation, strongly suggesting that p105 is a pseudo substrate of FBXO7.


Assuntos
Proteínas F-Box/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células/fisiologia , Estabilidade Enzimática , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , RNA Interferente Pequeno/genética , Especificidade por Substrato , Fator de Transcrição RelA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
9.
PLoS One ; 15(8): e0236679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760087

RESUMO

The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3ß proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Animais , Proteínas de Drosophila/genética , Quinase 3 da Glicogênio Sintase/genética , Isoenzimas/fisiologia , Proteômica/métodos
10.
Mol Cancer Res ; 18(10): 1560-1573, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32571981

RESUMO

Mechanisms regulating nuclear organization control fundamental cellular processes, including the cell and chromatin organization. Their disorganization, including aberrant nuclear architecture, has been often implicated in cellular transformation. Here, we identify Lamin A, among proteins essential for nuclear architecture, as SPANX (sperm protein associated with the nucleus on the X chromosome), a cancer testis antigen previously linked to invasive tumor phenotypes, interacting protein in melanoma. SPANX interaction with Lamin A was mapped to the immunoglobulin fold-like domain, a region critical for Lamin A function, which is often mutated in laminopathies. SPANX downregulation in melanoma cell lines perturbed nuclear organization, decreased cell viability, and promoted senescence-associated phenotypes. Moreover, SPANX knockdown (KD) in melanoma cells promoted proliferation arrest, a phenotype mediated in part by IRF3/IL1A signaling. SPANX KD in melanoma cells also prompted the secretion of IL1A, which attenuated the proliferation of naïve melanoma cells. Identification of SPANX as a nuclear architecture complex component provides an unexpected insight into the regulation of Lamin A and its importance in melanoma. IMPLICATIONS: SPANX, a testis protein, interacts with LMNA and controls nuclear architecture and melanoma growth.


Assuntos
Lamina Tipo A/metabolismo , Laminas/metabolismo , Melanoma/genética , Proteínas Nucleares/genética , Humanos , Melanoma/patologia , Transfecção
11.
Biochem Biophys Res Commun ; 517(2): 188-192, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31327494

RESUMO

The endoplasmic reticulum (ER) is a major site for protein synthesis, folding and transport, lipid and steroid synthesis, regulating redox potential, as well as calcium storage. It therefore relies on delicate homeostasis, and perturbation of the ER function and induction of ER stress can lead to apoptosis. One cause of disruption of the ER homeostasis is the accumulation of misfolded proteins. To prevent this perturbation, the Endoplasmic Reticulum-Associated Degradation (ERAD) quality control machinery is recruited to remove these proteins in a three-step process: (1) extraction from the ER, (2) ubiquitination, and (3) subsequent proteasomal degradation. However, the identity of the proteins regulated by the proteasome following induction of the ER stress has remained obscure. In the present study, we investigated the role of the proteasome in the modulation of the proteome of HeLa cells after treatment with thapsigargin and tunicamycin, two drugs known to induce ER stress through accumulation of misfolded proteins. Using label-free quantitative proteomics we found that out of the proteins identified to decrease in their level following induction of ER stress, more than 64% are targeted by the proteasome. Among these proteins, key players of the Wnt signaling pathway, such as ß-catenin and GSK3, as well as α-catenin which is involved in cell-cell adhesion, were identified as being modulated by the proteasome upon ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Adesão Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Células HeLa , Humanos , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Via de Sinalização Wnt
12.
ACS Chem Neurosci ; 10(8): 3464-3478, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31313906

RESUMO

The formation of misfolded protein oligomers during early stages of amyloid aggregation and the activation of neuroinflammatory responses are two key events associated with neurodegenerative diseases. Although it has been established that misfolded oligomers are involved in the neuroinflammatory process, the links between their structural features and their functional effects on the immune response remain unknown. To explore such links, we took advantage of two structurally distinct soluble oligomers (type A and B) of protein HypF-N and compared the elicited microglial inflammatory responses. By using confocal microscopy, protein pull-down, and high-throughput mass spectrometry, we found that, even though both types bound to a common pool of microglial proteins, type B oligomers-with a lower solvent-exposed hydrophobicity-showed enhanced protein binding, correlating with the observed inflammatory response. Furthermore, the interactome associated with inflammatory-mediated neurodegeneration revealed previously unidentified receptors and signaling molecules likely to be involved in the oligomer-elicited innate immune response.


Assuntos
Carboxil e Carbamoil Transferases/imunologia , Proteínas de Escherichia coli/imunologia , Imunidade Inata/imunologia , Microglia/imunologia , Agregação Patológica de Proteínas/imunologia , Animais , Linhagem Celular , Cricetinae , Humanos , Camundongos , Microglia/patologia , Agregação Patológica de Proteínas/patologia , Ligação Proteica
13.
J Proteome Res ; 18(6): 2525-2534, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31083952

RESUMO

An important area of modern biology consists of understanding the relationship between genotype and phenotype. However, to understand this relationship it is essential to investigate one of the principal links between them: the proteome. With the development of recent mass-spectrometry approaches, it is now possible to quantify entire proteomes and thus relate them to different phenotypes. Here, we present a comparison of the proteome of two extreme developmental states in the well-established model organism Drosophila melanogaster: adult and embryo. Protein modules such as ribosome, proteasome, tricarboxylic acid cycle, glycolysis, or oxidative phosphorylation were found differentially expressed between the two developmental stages. Analysis of post-translation modifications of the proteins identified in this study indicates that they generally follow the same trend as their corresponding protein. Comparison between changes in the proteome and the transcriptome highlighted patterns of post-transcriptional regulation for the subunits of protein complexes such as the ribosome and the proteasome, whereas protein from modules such as TCA cycle, glycolysis, and oxidative phosphorylation seem to be coregulated at the transcriptional level. Finally, the impact of the endosymbiont Wolbachia pipientis on the proteome of both developmental states was also investigated.


Assuntos
Drosophila melanogaster/genética , Biossíntese de Proteínas/genética , Proteoma/genética , Transcriptoma/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/microbiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteólise , Proteoma/metabolismo , Proteômica/métodos , Wolbachia/patogenicidade
14.
Front Genet ; 10: 254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984242

RESUMO

The 4G family of eukaryotic mRNA translation initiation factors is composed of three members (eIF4GI, eIF4GII, and DAP5). Their specific roles in translation initiation are under intense investigations, but how their respective intracellular amounts are controlled remains poorly understood. Here we show that eIF4GI and eIF4GII exhibit much shorter half-lives than that of DAP5. Both eIF4GI and eIF4GII proteins, but not DAP5, contain computer-predicted PEST motifs in their N-termini conserved across the animal kingdom. They are both sensitive to degradation by the proteasome. Under normal conditions, eIF4GI and eIF4GII are protected from proteasomal destruction through binding to the detoxifying enzyme NQO1 [NAD(P)H:quinone oxidoreductase]. However, when cells are exposed to oxidative stress both eIF4GI and eIF4GII, but not DAP5, are degraded by the proteasome in an N-terminal-dependent manner, and cell viability is more compromised upon silencing of DAP5. These findings indicate that the three eIF4G proteins are differentially regulated by the proteasome and that persistent DAP5 plays a role in cell survival upon oxidative stress.

15.
Biochem Biophys Res Commun ; 513(3): 721-725, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30992132

RESUMO

The proteasome is one of the main catalytic machineries of eukaryotic cells responsible for protein degradation, and is known to be regulated during several cellular stress conditions. Recent studies suggest that the activity of the proteasome is modulated following mTOR inhibition. However, it is not clear how this process affects the proteome. In the present study, we investigated the role of the proteasome in the modulation of the proteome of HeLa cells following amino acid starvation, a stress known to inhibit mTOR activity. We used label-free quantitative proteomics to identify proteins regulated by the proteasome in starved cells. We found that nearly 50% of the proteins the level of which decreased significantly during starvation stress, could be rescued by addition of the proteasome inhibitor MG132. This suggests a key role for the proteasome in reshaping the proteome under starvation. Importantly, the expression of several of these proteins is known to be dependent on the transcription factor E2F1. Further investigation of E2F1 level showed that this transcription factor along with several other proteins involved in its pathway are regulated by the proteasome upon amino acids starvation.


Assuntos
Ciclo Celular , Fator de Transcrição E2F1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Aminoácidos/metabolismo , Células HeLa , Humanos
16.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700495

RESUMO

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Assuntos
Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/farmacologia , Reprodutibilidade dos Testes
17.
Front Plant Sci ; 9: 1626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467512

RESUMO

Ethylene, the plant ripening hormone of climacteric fruit, is perceived by ethylene receptors which is the first step in the complex ethylene signal transduction pathway. Much progress has been made in elucidating the mechanism of this pathway, but there is still a lot to be done in the proteomic quantification of the main proteins involved, particularly during fruit ripening. This work focuses on the mass spectrometry based identification and quantification of the ethylene receptors (ETRs) and the downstream components of the pathway, CTR-like proteins (CTRs) and ETHYLENE INSENSITIVE 2 (EIN2). We used tomato as a model fruit to study changes in protein abundance involved in the ethylene signal transduction during fruit ripening. In order to detect and quantify these low abundant proteins located in the membrane of the endoplasmic reticulum, we developed a workflow comprising sample fractionation and MS analysis using parallel reaction monitoring. This work shows the feasibility of the identification and absolute quantification of all seven ethylene receptors, three out of four CTRs and EIN2 in four ripening stages of tomato. In parallel, gene expression was analyzed through real-time qPCR. Correlation between transcriptomic and proteomic profiles during ripening was only observed for three of the studied proteins, suggesting that the other signaling proteins are likely post-transcriptionally regulated. Based on our quantification results we were able to show that the protein levels of SlETR3 and SlETR4 increased during ripening, probably to control ethylene sensitivity. The other receptors and CTRs showed either stable levels that could sustain, or decreasing levels that could promote fruit ripening.

18.
Proc Natl Acad Sci U S A ; 115(28): E6477-E6486, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29934401

RESUMO

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.


Assuntos
Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Autoantígenos/genética , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Domínios Proteicos , Proteínas/genética
19.
Plant J ; 92(6): 1202-1217, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024340

RESUMO

Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteoma , Proteômica , Biomarcadores/metabolismo , Organelas/metabolismo , Transporte Proteico
20.
Proteomics ; 17(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28922568

RESUMO

Quantitative proteomics methods have emerged as powerful tools for measuring protein expression changes at the proteome level. Using MS-based approaches, it is now possible to routinely quantify thousands of proteins. However, prefractionation of the samples at the protein or peptide level is usually necessary to go deep into the proteome, increasing both MS analysis time and technical variability. Recently, a new MS acquisition method named SWATH is introduced with the potential to provide good coverage of the proteome as well as a good measurement precision without prior sample fractionation. In contrast to shotgun-based MS however, a library containing experimental acquired spectra is necessary for the bioinformatics analysis of SWATH data. In this study, spectral libraries for two widely used models are built to study crop ripening or animal embryogenesis, Solanum lycopersicum (tomato) and Drosophila melanogaster, respectively. The spectral libraries comprise fragments for 5197 and 6040 proteins for S. lycopersicum and D. melanogaster, respectively, and allow reproducible quantification for thousands of peptides per MS analysis. The spectral libraries and all MS data are available in the MassIVE repository with the dataset identifiers MSV000081074 and MSV000081075 and the PRIDE repository with the dataset identifiers PXD006493 and PXD006495.


Assuntos
Drosophila melanogaster/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Solanum lycopersicum/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Biblioteca de Peptídeos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA