Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 19(5): e0300862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739614

RESUMO

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Brasil , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Charadriiformes/virologia , Genoma Viral , Aves/virologia
2.
Commun Biol ; 7(1): 476, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637646

RESUMO

Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.


Assuntos
Golfinho Nariz-de-Garrafa , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Florida/epidemiologia , Neuraminidase , Vírus da Influenza A/fisiologia , Aves
3.
J Pediatric Infect Dis Soc ; 13(1): 91-99, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38016076

RESUMO

BACKGROUND: Characterization of longitudinal SARS-CoV-2-specific antibody responses in children following infection and vaccination is needed to inform SARS-CoV-2 vaccine policy decisions for children, which may differ from adults. METHODS: We enrolled individuals at the time of SARS-CoV-2 infection or vaccination for longitudinal serological testing and compared SARS-CoV-2-spike-specific IgG and neutralization activity in children and adults stratified by infection and vaccination status using enzyme-linked immunosorbent and virus neutralization assays. RESULTS: Between June 2020 and December 2022, we collected sera from 669 participants aged 40 days to 55 years, including 330 unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection, 180 vaccinated SARS-CoV-2-naïve individuals, and 159 vaccinated previously infected individuals. Half (n = 330, 49.3%) were children. SARS-CoV-2-specific IgG and neutralization activity in children < 12 years old in response to infection persisted at higher levels than those of adults through at least 6 months (spike-specific IgG levels, 2.05 [95% CI: 1.4-3.1] times higher than adults; neutralizing activity, median 88.8 vs 75.2%, respectively, p = .04). In addition, all pediatric participants had significantly higher IgG levels compared with adults at 6 months following infection or vaccination, regardless of prior infection status. Vaccine-induced SARS-CoV-2-specific IgG responses in previously infected individuals persisted at higher levels than those from infection alone at 6 months (median AUC, children 5-11 years old, 9115 vs 368; adolescents 3613 vs 475; adults 1956 vs 263, all p < .001). CONCLUSIONS: These data demonstrate the robust and persistent immunologic response of SARS-CoV-2 vaccination in children and emphasize the benefit of vaccination after SARS-CoV-2 infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Humanos , Criança , Pré-Escolar , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , Imunoglobulina G , Imunidade Adaptativa
4.
J Pediatric Infect Dis Soc ; 12(12): 618-626, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37956414

RESUMO

BACKGROUND: The role of SARS-CoV-2 viral load in predicting contagiousness, disease severity, transmissibility, and clinical decision-making continues to be an area of great interest. However, most studies have been in adults and have evaluated SARS-CoV-2 loads using cycle thresholds (Ct) values, which are not standardized preventing consistent interpretation critical to understanding clinical impact and utility. Here, a quantitative SARS-CoV-2 reverse-transcription digital PCR (RT-dPCR) assay normalized to WHO International Units was applied to children at risk of severe disease diagnosed with COVID-19 at St. Jude Children's Research Hospital between March 28, 2020, and January 31, 2022. METHODS: Demographic and clinical information from children, adolescents, and young adults treated at St. Jude Children's Research Hospital were abstracted from medical records. Respiratory samples underwent SARS-CoV-2 RNA quantitation by RT-dPCR targeting N1 and N2 genes, with sequencing to determine the genetic lineage of infecting virus. RESULTS: Four hundred and sixty-two patients aged 0-24 years (median 11 years old) were included during the study period. Most patients were infected by the omicron variant (43.72%), followed by ancestral strain (22.29%), delta (13.20%), and alpha (2.16%). Viral load at presentation ranged from 2.49 to 9.14 log10 IU/mL, and higher viral RNA loads were associated with symptoms (OR 1.32; CI 95% 1.16-1.49) and respiratory disease (OR 1.23; CI 95% 1.07-1.41). Viral load did not differ by SARS-CoV-2 variant, vaccination status, age, or baseline diagnosis. CONCLUSIONS: SARS-CoV-2 RNA loads predict the presence of symptomatic and respiratory diseases. The use of standardized, quantitative methods is feasible, allows for replication, and comparisons across institutions, and has the potential to facilitate consensus quantitative thresholds for risk stratification and treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Adulto Jovem , Humanos , Adolescente , SARS-CoV-2/genética , RNA Viral/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , Carga Viral , Teste para COVID-19
5.
Nat Commun ; 14(1): 3082, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248261

RESUMO

Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Animais Selvagens , Aves , Aves Domésticas , Filogenia , Mamíferos
6.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255426

RESUMO

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinação , Carga Viral , Adulto , Feminino , Humanos , Masculino , COVID-19/diagnóstico , COVID-19/genética , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/uso terapêutico , Estudos Prospectivos , RNA Viral/análise , RNA Viral/genética , DNA Polimerase Dirigida por RNA , SARS-CoV-2/genética , Vacinação/estatística & dados numéricos , Estados Unidos/epidemiologia , Carga Viral/efeitos dos fármacos , Carga Viral/genética , Carga Viral/estatística & dados numéricos , Sequenciamento Completo do Genoma , Infecções Assintomáticas/epidemiologia , Infecções Assintomáticas/terapia , Fatores de Tempo , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Vacinas de mRNA
7.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221269

RESUMO

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

8.
Transbound Emerg Dis ; 69(6): e3436-e3446, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36217218

RESUMO

Wild aquatic birds are the natural reservoirs of avian influenza viruses (AIVs). It is estimated that 100 million seabirds live in the Antarctic Peninsula and adjacent islands, regularly encountering migratory birds that use the islands to nest. Between 2010 and 2013, we collected samples from 865 seabirds in Elephant, King George and Livingston islands, around Antarctica Peninsula: chinstrap penguin (n = 143); gentoo penguin (n = 208); Adelie penguin (n = 46); brown skua (n = 90); Cape petrel (n = 115) and southern giant petrel (n = 263). Serum (n = 673) samples were analysed by competitive ELISA and swabs (n = 614) were tested by one step real-time RT-PCR for avian influenza virus (AIV). Sera from 30 chinstrap penguins, 76 brown skuas and a single Adelie penguin were seropositive for AIV. Thirteen swab samples were AIV positive by RT-PCR, and complete genome sequences of H6N8 AIVs isolated from brown skua and chinstrap penguin in 2011 were obtained. Phylogenetic analyses indicated that all gene segments of the H6N8 viruses were closely related to Argentinian and Chilean AIVs. The prevalence with which we identified evidence for AIVs infection in various Antarctic seabirds suggest viral circulation in Antarctic avifauna and interspecies viral transmission in the sub-Antarctic region.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Spheniscidae , Animais , Regiões Antárticas , Influenza Aviária/epidemiologia , Filogenia , Animais Selvagens , Vírus da Influenza A/genética , Chile
9.
Nature ; 605(7911): 640-652, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35361968

RESUMO

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Evolução Biológica , Vacinas contra COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevenção & controle , Variantes Farmacogenômicos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia , Virulência
10.
Nature ; 603(7902): 687-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062015

RESUMO

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Assuntos
COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Cricetinae , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Viral
11.
Open Forum Infect Dis ; 8(9): ofab420, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34557558

RESUMO

The efficacy of coronavirus disease 2019 (COVID-19) vaccines administered after COVID-19-specific monoclonal antibody is unknown, and "antibody interference" might hinder immune responses leading to vaccine failure. In an institutional review board-approved prospective study, we found that an individual who received mRNA COVID-19 vaccination <40 days after COVID-19-specific monoclonal antibody therapy for symptomatic COVID-19 had similar postvaccine antibody responses to SARS-CoV-2 receptor binding domain (RBD) for 4 important SARS-CoV-2 variants (B.1, B.1.1.7, B.1.351, and P.1) as other participants who were also vaccinated following COVID-19. Vaccination against COVID-19 shortly after COVID-19-specific monoclonal antibody can boost and expand antibody protection, questioning the need to delay vaccination in this setting. TRIAL REGISTRATION: The St. Jude Tracking of Viral and Host Factors Associated with COVID-19 study; NCT04362995; https://clinicaltrials.gov/ct2/show/NCT04362995.

12.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464596

RESUMO

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Animais , Células Cultivadas , Células Clonais , Cricetinae , Modelos Animais de Doenças , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Carga Viral
14.
Vaccines (Basel) ; 8(4)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207583

RESUMO

To optimize the public health response to coronavirus disease 2019 (COVID-19), we must first understand the antibody response to individual proteins on the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the antibody's cross reactivity to other coronaviruses. Using a panel of 37 convalescent COVID-19 human serum samples, we showed that the magnitude and specificity of responses varied across individuals, independent of their reactivity to seasonal human coronaviruses (HCoVs). These data suggest that COVID-19 vaccines will elicit primary humoral immune responses in naïve individuals and variable responses in those previously exposed to SARS-CoV-2. Unlike the limited cross-coronavirus reactivities in humans, serum samples from 96 dogs and 10 cats showed SARS-CoV-2 protein-specific responses focused on non-S1 proteins. The correlation of this response with those to other coronaviruses suggests that the antibodies are cross-reactive and generated to endemic viruses within these hosts, which must be considered in seroepidemiologic studies. We conclude that substantial variation in antibody generation against coronavirus proteins will influence interpretations of serologic data in the clinical and veterinary settings.

16.
Nature ; 587(7834): 466-471, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116313

RESUMO

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Assuntos
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Vírus da Influenza A/patogenicidade , Pulmão/patologia , Pulmão/fisiopatologia , Proteína ADAMTS4/antagonistas & inibidores , Animais , Aves/virologia , Matriz Extracelular/enzimologia , Perfilação da Expressão Gênica , Humanos , Influenza Aviária/virologia , Influenza Humana/patologia , Influenza Humana/terapia , Influenza Humana/virologia , Interferons/imunologia , Interferons/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Pulmão/enzimologia , Pulmão/virologia , Camundongos , Síndrome do Desconforto Respiratório/enzimologia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Estações do Ano , Análise de Célula Única , Células Estromais/metabolismo
17.
Emerg Microbes Infect ; 9(1): 1702-1711, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32666894

RESUMO

Influenza A/H5N1 has circulated in Asia since 2003 and is now enzootic in many countries in that region. In Cambodia, the virus has circulated since 2004 and has intermittently infected humans. During this period, we have noted differences in the rate of infections in humans, potentially associated with the circulation of different viral clades. In particular, a reassortant clade 1.1.2 virus emerged in early 2013 and was associated with a dramatic increase in infections of humans (34 cases) until it was replaced by a clade 2.3.2.1c virus in early 2014. In contrast, only one infection of a human has been reported in the 6 years since the clade 2.3.2.1c virus became the dominant circulating virus. We selected three viruses to represent the main viral clades that have circulated in Cambodia (clade 1.1.2, clade 1.1.2 reassortant, and clade 2.3.2.1c), and we conducted experiments to assess the virulence and transmissibility of these viruses in avian (chicken, duck) and mammalian (ferret) models. Our results suggest that the clade 2.3.2.1c virus is more "avian-like," with high virulence in both ducks and chickens, but there is no evidence of aerosol transmission of the virus from ducks to ferrets. In contrast, the two clade 1 viruses were less virulent in experimentally infected and contact ducks. However, evidence of chicken-to-ferret aerosol transmission was observed for both clade 1 viruses. The transmission experiments provide insights into clade-level differences that might explain the variation in A/H5N1 infections of humans observed in Cambodia and other settings.


Assuntos
Galinhas/virologia , Patos/virologia , Furões/virologia , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Animais , Camboja/epidemiologia , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/epidemiologia , Filogenia , Especificidade da Espécie , Virulência
18.
Proc Natl Acad Sci U S A ; 117(15): 8593-8601, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32217734

RESUMO

Baloxavir marboxil (BXM) was approved in 2018 for treating influenza A and B virus infections. It is a first-in-class inhibitor targeting the endonuclease activity of the virus polymerase acidic (PA) protein. Clinical trial data revealed that PA amino acid substitutions at residue 38 (I38T/F/M) reduced BXM potency and caused virus rebound in treated patients, although the fitness characteristics of the mutant viruses were not fully defined. To determine the fitness impact of the I38T/F/M substitutions, we generated recombinant A/California/04/2009 (H1N1)pdm09, A/Texas/71/2017 (H3N2), and B/Brisbane/60/2008 viruses with I38T/F/M and examined drug susceptibility in vitro, enzymatic properties, replication efficiency, and transmissibility in ferrets. Influenza viruses with I38T/F/M substitutions exhibited reduced baloxavir susceptibility, with 38T causing the greatest reduction. The I38T/F/M substitutions impaired PA endonuclease activity as compared to that of wild-type (I38-WT) PA. However, only 38T/F A(H3N2) substitutions had a negative effect on polymerase complex activity. The 38T/F substitutions decreased replication in cells among all viruses, whereas 38M had minimal impact. Despite variable fitness consequences in vitro, all 38T/M viruses disseminated to naive ferrets by contact and airborne transmission, while 38F-containing A(H3N2) and B viruses failed to transmit via the airborne route. Reversion of 38T/F/M to I38-WT was rare among influenza A viruses in this study, suggesting stable retention of 38T/F/M genotypes during these transmission events. BXM reduced susceptibility-associated mutations had variable effects on in vitro fitness of influenza A and B viruses, but the ability of these viruses to transmit in vivo indicates a risk of their spreading from BXM-treated individuals.


Assuntos
Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Infecções por Orthomyxoviridae/transmissão , Oxazinas/farmacologia , Piridinas/farmacologia , Tiepinas/farmacologia , Triazinas/farmacologia , Replicação Viral , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Dibenzotiepinas , Furões , Masculino , Testes de Sensibilidade Microbiana , Morfolinas , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Piridonas , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Influenza Other Respir Viruses ; 12(2): 220-231, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143465

RESUMO

BACKGROUND: There is insufficient knowledge about the relation of avian influenza virus (AIV) to migratory birds in South America. Accordingly, we studied samples obtained over a 4-year period (2009-2012) from wild birds at a major wintering site in southern Brazil. METHODS: We obtained 1212 oropharyngeal/cloacal samples from wild birds at Lagoa do Peixe National Park and screened them for influenza A virus by RT-PCR amplification of the matrix gene. Virus isolates were subjected to genomic sequencing and antigenic characterization. RESULTS: Forty-eight samples of 1212 (3.96%) contained detectable influenza virus RNA. Partial viral sequences were obtained from 12 of these samples, showing the presence of H2N2 (1), H6Nx (1), H6N1 (8), H9N2 (1), and H12N5 (1) viruses. As H6 viruses predominated, we generated complete genomes from all 9 H6 viruses. Phylogenetic analyses showed that they were most similar to viruses of South American lineage. The H6N1 viruses caused no disease signs in infected ferrets and, despite genetic differences, were antigenically similar to North American isolates. CONCLUSIONS: Lagoa do Peixe National Park is a source of multiple AIV subtypes, with the levels of influenza virus in birds being highest at the end of their wintering period in this region. H6N1 viruses were the predominant subtype identified. These viruses were more similar to viruses of South American lineage than to those of North American lineage.


Assuntos
Aves/virologia , Variação Genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Antígenos Virais/análise , Brasil , Cloaca/virologia , Vírus da Influenza A/genética , Orofaringe/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética
20.
PLoS One ; 12(5): e0177214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28486490

RESUMO

A novel avian paramyxovirus (APMV) isolated from a migratory bird cloacal swab obtained during active surveillance in April 2012 in the Lagoa do Peixe National Park, Rio Grande do Sul state, South of Brazil was biologically and genetically characterized. The nucleotide sequence of the full viral genome was completed using a next-generation sequencing approach. The genome was 14,952 nucleotides (nt) long, with six genes (3'-NP-P-M-F-HN-L-5') encoding 7 different proteins, typical of APMV. The fusion (F) protein gene of isolate RS-1177 contained 1,707 nucleotides in a single open reading frame encoding a protein of 569 amino acids. The F protein cleavage site contained two basic amino acids (VPKER↓L), typical of avirulent strains. Phylogenetic analysis of the whole genome indicated that the virus is related to APMV-10, -2 and -8, with 60.1% nucleotide sequence identity to the closest APMV-10 virus, 58.7% and 58.5% identity to the closest APMV-8 and APMV-2 genome, respectively, and less than 52% identity to representatives of the other APMVs groups. Such distances are comparable to the distances observed among other previously identified APMVs serotypes. These results suggest that unclassified/calidris_fuscicollis/Brazil/RS-1177/2012 is the prototype strain of a new APMV serotype, APMV-15.


Assuntos
Migração Animal , Avulavirus/isolamento & purificação , Aves/virologia , Animais , Avulavirus/classificação , Avulavirus/genética , Aves/fisiologia , Genes Virais , Filogenia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA