RESUMO
BACKGROUND: The DNA-repair enzyme Artemis is essential for rearrangement of T- and B-cell receptors. Mutations in DCLRE1C, which encodes Artemis, cause Artemis-deficient severe combined immunodeficiency (ART-SCID), which is poorly responsive to allogeneic hematopoietic-cell transplantation. METHODS: We carried out a phase 1-2 clinical study of the transfusion of autologous CD34+ cells, transfected with a lentiviral vector containing DCLRE1C, in 10 infants with newly diagnosed ART-SCID. We followed them for a median of 31.2 months. RESULTS: Marrow harvest, busulfan conditioning, and lentiviral-transduced CD34+ cell infusion produced the expected grade 3 or 4 adverse events. All the procedures met prespecified criteria for feasibility at 42 days after infusion. Gene-marked T cells were detected at 6 to 16 weeks after infusion in all the patients. Five of 6 patients who were followed for at least 24 months had T-cell immune reconstitution at a median of 12 months. The diversity of T-cell receptor ß chains normalized by 6 to 12 months. Four patients who were followed for at least 24 months had sufficient B-cell numbers, IgM concentration, or IgM isohemagglutinin titers to permit discontinuation of IgG infusions. Three of these 4 patients had normal immunization responses, and the fourth has started immunizations. Vector insertion sites showed no evidence of clonal expansion. One patient who presented with cytomegalovirus infection received a second infusion of gene-corrected cells to achieve T-cell immunity sufficient for viral clearance. Autoimmune hemolytic anemia developed in 4 patients 4 to 11 months after infusion; this condition resolved after reconstitution of T-cell immunity. All 10 patients were healthy at the time of this report. CONCLUSIONS: Infusion of lentiviral gene-corrected autologous CD34+ cells, preceded by pharmacologically targeted low-exposure busulfan, in infants with newly diagnosed ART-SCID resulted in genetically corrected and functional T and B cells. (Funded by the California Institute for Regenerative Medicine and the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT03538899.).
Assuntos
Terapia Genética , Imunodeficiência Combinada Severa , Humanos , Lactente , Bussulfano/uso terapêutico , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Imunoglobulina M , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Antígenos CD34/administração & dosagem , Antígenos CD34/imunologia , Transplante Autólogo/efeitos adversos , Transplante Autólogo/métodos , Lentivirus , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Vetores Genéticos/uso terapêutico , Linfócitos T/imunologia , Linfócitos B/imunologiaRESUMO
After allogeneic hematopoietic cell transplantation (HCT), the minimal myeloid chimerism required for full T and B cell reconstitution in patients with severe combined immunodeficiency (SCID) is unknown. We retrospectively reviewed our experience with low-exposure busulfan (cumulative area under the curve, 30 mg·hr/L) in 10 SCID patients undergoing either first or repeat HCT from unrelated or haploidentical donors. The median busulfan dose required to achieve this exposure was 5.9 mg/kg (range, 4.8 to 9.1). With a median follow-up of 4.5 years all patients survived, with 1 requiring an additional HCT. Donor myeloid chimerism was generally >90% at 1 month post-HCT, but in most patients it fell during the next 3 months, such that 1-year median myeloid chimerism was 14% (range, 2% to 100%). Six of 10 patients had full T and B cell reconstitution, despite myeloid chimerism as low as 3%. Three patients have not recovered B cell function at over 2 years post-HCT, 2 of them in the setting of treatment with rituximab for post-HCT autoimmunity. Low-exposure busulfan was well tolerated and achieved sufficient myeloid chimerism for full immune reconstitution in over 50% of patients. However, other factors beyond busulfan exposure may also play critical roles in determining long-term myeloid chimerism and full T and B cell reconstitution.
Assuntos
Linfócitos B , Bussulfano/administração & dosagem , Imunodeficiência Combinada Severa , Linfócitos T , Quimeras de Transplante , Condicionamento Pré-Transplante , Linfócitos B/imunologia , Linfócitos B/metabolismo , Criança , Feminino , Seguimentos , Humanos , Lactente , Masculino , Estudos Retrospectivos , Imunodeficiência Combinada Severa/sangue , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Quimeras de Transplante/sangue , Quimeras de Transplante/imunologiaRESUMO
This retrospective analysis comprises 10-year experience with early posttransplant mixed chimerism-based preemptive intervention. Out of 104 patients, 51 received preemptive immunotherapy. Their outcomes were similar to patients achieving full donor chimerism spontaneously. Among patients receiving intervention, 5-year event-free survival was identical in patients with and without pretransplant residual disease, respectively (68% [95% confidence interval (CI) 38-98%] vs. 69% [95% CI 54-85%] log-rank = 0.4). In patients who received preemptive immunotherapy, chimerism status and residual disease prior to transplant were no longer predictors of poor outcome; however, 41% of the patients with residual disease prior to transplant relapsed early and did not benefit from this strategy.