Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722686

RESUMO

Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. Endoplasmic reticulum (ER) stress is linked to inflammatory bowel disease (IBD). Herein, we used cell culture, mouse models, and human specimens to examine if ER stress in ILC3s impacts IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24h-rhythmic expression pattern of the master ER stress response regulator, IRE1α/XBP1. Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial reactive oxygen species (mtROS). IRE1α/XBP1 was activated in ILC3s of mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in Crohn's disease patients before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with response to treatment. We demonstrate that a non-canonical mtROS-IRE1α/XBP1 pathway augments cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting response to anti-IL-23 therapies in IBD.

3.
Microbiome ; 11(1): 90, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101209

RESUMO

BACKGROUND: The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure. METHODS: Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment. RESULTS: We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk. CONCLUSION: This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Inulina , Humanos , Animais , Camundongos , Inulina/farmacologia , Dieta , Fibras na Dieta , Celulose , Epitélio , Comunicação Celular
4.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36801011

RESUMO

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Assuntos
Ferroptose , Linfócitos Intraepiteliais , Animais , Camundongos , Linfócitos Intraepiteliais/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Oxidativo , Hidrocarbonetos
5.
Int Immunol ; 35(3): 107-121, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36409583

RESUMO

Dendritic cells (DCs) express major histocompatibility complex class II (MHC-II) and are best known for proficiently presenting antigens to T cells, thereby eliciting specific adaptive T cell responses. Moreover, conventional DCs (cDCs) are specifically adept at handling intestinal antigens. Relatively recent discoveries and investigations have proven the existence of a new group of innate lymphocytes that reside in tissues like the intestine. They lack specific antigen receptors and can express MHC-II. These group 3 innate lymphoid cells (ILC3s) comprise a subset of heterogeneous innate lymphocytes that mirror the phenotype and functions of T-helper cells and act in the first line of defense. Considering that ILC3s are crucial for maintaining homeostasis of the intestinal mucosa and are found in niches alongside DCs, we herein describe the roles played by cDCs and ILC3s in the gut, highlighting the most recent studies. We discuss how these cells are alike and differ, constantly pointing out the thin, blurry line that separates cDCs and ILC3s.


Assuntos
Imunidade Inata , Linfócitos , Células Dendríticas , Antígenos de Histocompatibilidade Classe II , Mucosa Intestinal
6.
Inflammation ; 45(6): 2280-2293, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35840810

RESUMO

Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl: Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1ß-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl: Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1ß and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.


Assuntos
Hiperalgesia , Neutrófilos , Animais , Camundongos , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Neutrófilos/metabolismo , Dor
7.
Nanomedicine ; 28: 102231, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32502697

RESUMO

Photodynamic therapy is a minimally invasive health technology used to treat cancer and other non-malignant diseases, as well as inactivation of viruses, bacteria and fungi. In this work, we sought to combine the phototherapy technique using low intensity LED (660 nm) to induce ablation in melanoma tumor in mice treated with nanoparticles. In vitro and in vivo studies were conducted, and our results demonstrated that multi-walled carbon nanotubes (MWCNTs) do not destroy tumor cells in vivo, but stimulate the inflammatory process and angiogenesis. Reduced graphene oxide (rGO), has been shown to play a protective role associated with the LED ablation, inducing necrosis, stimulation of immune response by lymphoproliferation, and decreased tumor mass in vivo. We consider that LED alone can be very effective in controlling the growth of melanoma tumors and its association with rGO is potentiated.


Assuntos
Grafite/química , Melanoma/terapia , Nanotubos de Carbono/química , Animais , Camundongos , Fotoquimioterapia
8.
J Immunol ; 204(8): 2257-2268, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169845

RESUMO

Plasmacytoid dendritic cells (pDCs) produce abundant type I IFNs (IFN-I) in response to viral nucleic acids. Generation of pDCs from bone marrow dendritic cell (DC) progenitors and their maintenance is driven by the transcription factor E2-2 and inhibited by its repressor Id2. In this study, we find that mouse pDCs selectively express the receptor for LIF that signals through STAT3. Stimulation of pDCs with LIF inhibited IFN-I, TNF, and IL-6 responses to CpG and induced expression of the STAT3 targets SOCS3 and Bcl3, which inhibit IFN-I and NF-κB signaling. Moreover, although STAT3 has been also reported to induce E2-2, LIF paradoxically induced its repressor Id2. A late-stage bone marrow DC progenitor expressed low amounts of LIFR and developed into pDCs less efficiently after being exposed to LIF, consistent with the induction of Id2. Conversely, pDC development and serum IFN-I responses to lymphocytic choriomeningitis virus infection were augmented in newly generated mice lacking LIFR in either CD11c+ or hematopoietic cells. Thus, an LIF-driven STAT3 pathway induces SOCS3, Bcl3, and Id2, which render pDCs and late DC progenitors refractory to physiological stimuli controlling pDC functions and development. This pathway can be potentially exploited to prevent inappropriate secretion of IFN-I in autoimmune diseases or promote IFN-I secretion during viral infections.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Fator Inibidor de Leucemia/metabolismo , Animais , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia
9.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31876919

RESUMO

Antibiotic-induced dysbiosis is a key predisposing factor for Clostridium difficile infections (CDIs), which cause intestinal disease ranging from mild diarrhea to pseudomembranous colitis. Here, we examined the impact of a microbiota-derived metabolite, short-chain fatty acid acetate, on an acute mouse model of CDI. We found that administration of acetate is remarkably beneficial in ameliorating disease. Mechanistically, we show that acetate enhances innate immune responses by acting on both neutrophils and ILC3s through its cognate receptor free fatty acid receptor 2 (FFAR2). In neutrophils, acetate-FFAR2 signaling accelerates their recruitment to the inflammatory sites, facilitates inflammasome activation, and promotes the release of IL-1ß; in ILC3s, acetate-FFAR2 augments expression of the IL-1 receptor, which boosts IL-22 secretion in response to IL-1ß. We conclude that microbiota-derived acetate promotes host innate responses to C. difficile through coordinate action on neutrophils and ILC3s.


Assuntos
Acetatos/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Enterocolite Pseudomembranosa/imunologia , Imunidade Inata/imunologia , Neutrófilos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Animais , Inflamassomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
10.
Sci Immunol ; 4(40)2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586012

RESUMO

Many gut functions are attuned to circadian rhythm. Intestinal group 3 innate lymphoid cells (ILC3s) include NKp46+ and NKp46- subsets, which are RORγt dependent and provide mucosal defense through secretion of interleukin-22 (IL-22) and IL-17. Because ILC3s highly express some key circadian clock genes, we investigated whether ILC3s are also attuned to circadian rhythm. We noted circadian oscillations in the expression of clock and cytokine genes, such as REV-ERBα, IL-22, and IL-17, whereas acute disruption of the circadian rhythm affected cytokine secretion by ILC3s. Because of prominent and rhythmic expression of REV-ERBα in ILC3s, we also investigated the impact of constitutive deletion of REV-ERBα, which has been previously shown to inhibit the expression of a RORγt repressor, NFIL3, while also directly antagonizing DNA binding of RORγt. Development of the NKp46+ ILC3 subset was markedly impaired, with reduced cell numbers, RORγt expression, and IL-22 production in REV-ERBα-deficient mice. The NKp46- ILC3 subsets developed normally, potentially due to compensatory expression of other clock genes, but IL-17 secretion paradoxically increased, probably because RORγt was not antagonized by REV-ERBα. We conclude that ILC3s are attuned to circadian rhythm, but clock regulator REV-ERBα also has circadian-independent impacts on ILC3 development and functions due to its roles in the regulation of RORγt.


Assuntos
Ritmo Circadiano/imunologia , Imunidade Inata/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Animais , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/imunologia
11.
Nat Commun ; 10(1): 3273, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332169

RESUMO

Severe respiratory syncytial virus (RSV) infection is a major cause of morbidity and mortality in infants <2 years-old. Here we describe that high-fiber diet protects mice from RSV infection. This effect was dependent on intestinal microbiota and production of acetate. Oral administration of acetate mediated interferon-ß (IFN-ß) response by increasing expression of interferon-stimulated genes in the lung. These effects were associated with reduction of viral load and pulmonary inflammation in RSV-infected mice. Type 1 IFN signaling via the IFN-1 receptor (IFNAR) was essential for acetate antiviral activity in pulmonary epithelial cell lines and for the acetate protective effect in RSV-infected mice. Activation of Gpr43 in pulmonary epithelial cells reduced virus-induced cytotoxicity and promoted antiviral effects through IFN-ß response. The effect of acetate on RSV infection was abolished in Gpr43-/- mice. Our findings reveal antiviral effects of acetate involving IFN-ß in lung epithelial cells and engagement of GPR43 and IFNAR.


Assuntos
Acetatos/farmacologia , Interferon Tipo I/metabolismo , Microbiota , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Células A549 , Acetatos/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Receptor de Interferon alfa e beta/genética , Receptores Acoplados a Proteínas G/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Células Vero , Carga Viral/efeitos dos fármacos , Carga Viral/genética
12.
Cell Rep ; 27(3): 750-761.e7, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995474

RESUMO

Antibiotic-induced dysbiosis is a key factor predisposing intestinal infection by Clostridium difficile. Here, we show that interventions that restore butyrate intestinal levels mitigate clinical and pathological features of C. difficile-induced colitis. Butyrate has no effect on C. difficile colonization or toxin production. However, it attenuates intestinal inflammation and improves intestinal barrier function in infected mice, as shown by reduced intestinal epithelial permeability and bacterial translocation, effects associated with the increased expression of components of intestinal epithelial cell tight junctions. Activation of the transcription factor HIF-1 in intestinal epithelial cells exerts a protective effect in C. difficile-induced colitis, and it is required for butyrate effects. We conclude that butyrate protects intestinal epithelial cells from damage caused by C. difficile toxins via the stabilization of HIF-1, mitigating local inflammatory response and systemic consequences of the infection.


Assuntos
Butiratos/administração & dosagem , Clostridioides difficile/patogenicidade , Colite/prevenção & controle , Fator 1 Induzível por Hipóxia/metabolismo , Administração Oral , Animais , Antibacterianos/farmacologia , Butiratos/farmacologia , Clostridioides difficile/metabolismo , Colite/etiologia , Colite/microbiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Insulina/administração & dosagem , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Junções Íntimas/metabolismo , Toxinas Biológicas/toxicidade , Triglicerídeos/administração & dosagem
13.
Front Immunol ; 9: 142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515566

RESUMO

Pneumonia is one of the leading causes of death and mortality worldwide. The inflammatory responses that follow respiratory infections are protective leading to pathogen clearance but can also be deleterious if unregulated. The microbiota is known to be an important protective barrier against infections, mediating both direct inhibitory effects against the potential pathogen and also regulating the immune responses contributing to a proper clearance of the pathogen and return to homeostasis. GPR43 is one receptor for acetate, a microbiota metabolite shown to induce and to regulate important immune functions. Here, we addressed the role of GPR43 signaling during pulmonary bacterial infections. We have shown for the first time that the absence of GPR43 leads to increased susceptibility to Klebsiella pneumoniae infection, which was associated to both uncontrolled proliferation of bacteria and to increased inflammatory response. Mechanistically, we showed that GPR43 expression especially in neutrophils and alveolar macrophages is important for bacterial phagocytosis and killing. In addition, treatment with the GPR43 ligand, acetate, is protective during bacterial lung infection. This was associated to reduction in the number of bacteria in the airways and to the control of the inflammatory responses. Altogether, GPR43 plays an important role in the "gut-lung axis" as a sensor of the host gut microbiota activity through acetate binding promoting a proper immune response in the lungs.


Assuntos
Infecções por Klebsiella/imunologia , Klebsiella pneumoniae , Receptores Acoplados a Proteínas G/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose , Receptores Acoplados a Proteínas G/genética
14.
Nat Commun ; 9(1): 105, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317660

RESUMO

The recently discovered histone post-translational modification crotonylation connects cellular metabolism to gene regulation. Its regulation and tissue-specific functions are poorly understood. We characterize histone crotonylation in intestinal epithelia and find that histone H3 crotonylation at lysine 18 is a surprisingly abundant modification in the small intestine crypt and colon, and is linked to gene regulation. We show that this modification is highly dynamic and regulated during the cell cycle. We identify class I histone deacetylases, HDAC1, HDAC2, and HDAC3, as major executors of histone decrotonylation. We show that known HDAC inhibitors, including the gut microbiota-derived butyrate, affect histone decrotonylation. Consistent with this, we find that depletion of the gut microbiota leads to a global change in histone crotonylation in the colon. Our results suggest that histone crotonylation connects chromatin to the gut microbiota, at least in part, via short-chain fatty acids and HDACs.


Assuntos
Crotonatos/metabolismo , Ácidos Graxos Voláteis/fisiologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Mucosa Intestinal/metabolismo , Acilação , Animais , Ciclo Celular , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Células HCT116 , Inibidores de Histona Desacetilases , Humanos , Masculino , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional
15.
J Nutr Biochem ; 39: 86-92, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816814

RESUMO

Connexins (Cx) and cadherins are responsible for cell homeostasis. The Cx activity is directly related to cholesterol. The present work investigates whether vitamin E, with or without caloric restriction (CR), alters the mRNA expression of Cx26, Cx32, Cx43, N-cadherins (N-cads), E-cadherins (E-cads) and alpha-smooth muscle actin (α-SMA), and evaluates their relation to cholesterol metabolism in rat liver. Animals were divided into different groups: control with ad libitum diet (C), control+vitamin E (CV), aloric restriction with intake to 60% of group C (CR), and the intake of group CR+vitamin E (RV). There were increases of manganese superoxide dismutase (Mn-SOD) and glutathione S-transferase mu 1, indicating antioxidant effects of CR and vitamin E. An increase of nitric oxide in the CR group was in agreement with the Mn-SOD data. Supplementation with vitamin E, with or without CR, upregulated the expression of Cx26 mRNA and increased low-density lipoprotein cholesterol (LDL-c) in the CV group. Reductions of Cx32 and Cx43 were associated with lower LDL-c. Increases in Hmgcr and low-density lipoprotein receptor (LDLr) in the CV and RV groups could be explained by the effect of vitamin E. A reduction of LDLr in the CR group was due to the reduced dietary intake. Increases in cadherins in the CV, CR and RV groups were indicative of tissue maintenance, which was also supported by increases of α-SMA in groups CV and RV. Finally, vitamin E, with or without CR, increased Cx26, probably modulated by expression of the Hmgcr and LDLr genes. This suggests important relationship of Cxs and cholesterol metabolism genes.


Assuntos
Caderinas/metabolismo , Restrição Calórica , Conexinas/metabolismo , Fígado/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Vitamina E/farmacologia , Animais , Caderinas/genética , LDL-Colesterol/sangue , Conexina 26 , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Dieta , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Homeostase , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Proteína beta-1 de Junções Comunicantes
16.
Tissue Cell ; 48(3): 224-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27138327

RESUMO

The effects of microcurrent application on the elastic cartilage defects in the outer ear of young animals were analyzed. Sixty male Wistar rats were divided into a control (CG) and a treated group (TG). An excisional lesion was created in the right outer ear of each animal. Daily treatment was started after 24h and consisted of the application of a low-intensity (20µA) continuous electrical current to the site of injury for 5min. The animals were euthanized after 7, 14 and 28 days of injury and the samples were submitted to analyses. In CG, areas of newly formed cartilage and intense basophilia were seen at 28 days, while in TG the same observations were made already at 14 days. The percentage of birefringent collagen fibers was higher in CG at 28 days. The number of connective tissue cells and granulocytes was significantly higher in TG. Ultrastructural analysis revealed the presence of chondrocytes in TG at 14 days, while these cells were observed in CG only at 28 days. Cuprolinic blue staining and the amount of glycosaminoglycans were significantly higher in TG at 14 days and 28 days. The amount of hydroxyproline was significantly higher in TG at all time points studied. The active isoform of MMP-2 was higher activity in TG at 14 days. Immunoblotting for type II collagen and decorin was positive in both groups and at all time points. The treatment stimulated the proliferation and differentiation of connective tissue cells, the deposition of glycosaminoglycans and collagen, and the structural reorganization of these elements during elastic cartilage repair.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Orelha Externa/efeitos da radiação , Cartilagem Elástica/efeitos da radiação , Animais , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/efeitos da radiação , Condrócitos/efeitos da radiação , Colágeno/metabolismo , Orelha Externa/crescimento & desenvolvimento , Orelha Externa/lesões , Cartilagem Elástica/crescimento & desenvolvimento , Radiação Eletromagnética , Masculino , Ratos , Cicatrização/efeitos da radiação
17.
Clin Transl Immunology ; 5(4): e73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27195116

RESUMO

Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of ATP by these cells. In addition, these molecules act as a link between the microbiota and the immune system by modulating different aspects of IECs and leukocytes development, survival and function through activation of G protein coupled receptors (FFAR2, FFAR3, GPR109a and Olfr78) and by modulation of the activity of enzymes and transcription factors including the histone acetyltransferase and deacetylase and the hypoxia-inducible factor. Considering that, it is not a surprise, the fact that these molecules and/or their targets are suggested to have an important role in the maintenance of intestinal homeostasis and that changes in components of this system are associated with pathological conditions including inflammatory bowel disease, obesity and others. The aim of this review is to present a clear and updated description of the effects of the SCFAs derived from bacteria on host immune system, as well as the molecular mechanisms involved on them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA