Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891759

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fitoterapia , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fitoterapia/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/complicações , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo
2.
Cell Rep ; 43(5): 114129, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38640063

RESUMO

The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.


Assuntos
Macrófagos , Nociceptividade , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Feminino , Humanos , Masculino , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL , Inflamação/patologia , Memória/fisiologia
3.
Planta ; 259(3): 60, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311674

RESUMO

MAIN CONCLUSION: Plant Biomarkers are objective indicators of a plant's cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant's cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Humanos , Produtos Agrícolas/genética , Estresse Fisiológico , Desenvolvimento Vegetal , Adaptação Fisiológica
4.
Am J Transl Res ; 15(10): 5997-6014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969197

RESUMO

OBJECTIVES: The use of medicinal plants for diabetes treatment is increasing owing to their effectiveness and safety compared to synthetic drugs. Thus, the ameliorative effects of Azanza garckeana (F. Hoffm.) fractions in diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats were evaluated in this study. METHODS: Rats with alloxan (120 mg/kg body weight (BW))-induced diabetes were randomized into different groups (n=5) and treated with the crude methanolic extract, and fractions (n-hexane, ethyl acetate, and aqueous fractions) of A. garckeana each at 100, 200, and 400 mg/kg BW. Glibenclamide (5 mg/kg BW) was used as a reference drug, and all treatments were administered orally daily for 6 weeks. RESULTS: Our data revealed that treatment with the crude extract caused a dose-dependent hypoglycemic effect of 61.32±3.45%, 76.05±3.05%, and 78.59±5.90% at 100, 200, and 400 mg/kg BW, respectively and improved the BW of the animals. The extract also ameliorated the elevated cholesterol, triglyceride, low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol compared with untreated control animals. The extract also reversed serum biochemical alterations in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, total and direct bilirubin, urea, and uric acid that were observed in untreated diabetic rats. Interestingly, the A. garckeana fraction also exhibited significant protection against diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats, with the ethyl acetate fraction exhibiting a remarkable protective effect. The LC-MS characterisation of the active fraction identified the presence of various phenolic and flavonoid compounds that could be responsible for the bioactivity of the fraction. CONCLUSION: Collectively, this study suggests the potential application of A. garckeana for effective treatment of diabetic nephropathy, with the ethyl acetate fraction of this plant representing a reserve of potential candidates for developing new drugs.

5.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824978

RESUMO

The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.

6.
Bioinorg Chem Appl ; 2022: 9602325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561898

RESUMO

Dental caries is considered one of the most prevalent oral diseases worldwide, with a high rate of morbidity among populations. It is a chronic infectious disease with a multifactorial etiology that leads to the destruction of the dental tissues. Due to their antimicrobial, anti-inflammatory, antifungal, and antioxidant properties; silver nanoparticles (AgNPs) are incorporated in dental products to help prevent infectious oral diseases. In this study, the antimicrobial effects of AgNPs synthesized using Gum Arabic extracts (GAE) were examined. The GA-AgNPs were synthesized and characterized using ultraviolet-visible (UV-Vis) spectrophotometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial activity of the GA-AgNPs was evaluated on Streptococcus sanguinis (S. sanguinis), Streptococcus mutans (S. mutans), Lactobacillus acidophilus (L. acidophilus), and Candida albicans (C. albicans) using agar disc diffusion and microdilution assays. The antibiofilm of GA-AgNPs was evaluated on the surface of human tooth enamel that had been exposed to S. mutans with and without the GA-AgNPs using scanning electron microscopy (SEM). GA-AgNPs were spherical in shape with a particle size distribution between 4 and 26 nm. The GA-AgNPs exhibited antimicrobial activity against all the tested oral microbes, with GA-AgNPs_0.4g having higher antimicrobial activity. The GA-AgNPs_0.4g inhibited S. mutans adhesion and biofilm formation on the surface of the tooth enamel. Therefore, this study supports the prospective implementation of the plant extract-mediated AgNPs in dental healthcare.

7.
J Biol Inorg Chem ; 27(7): 653-664, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36197522

RESUMO

The pincer complexes, [Pd(L1)Cl]BF4 (PdL1), [Pd(L2)Cl]BF4 (PdL2), [Pd(L3)Cl]BF4 (PdL3), [Pd(L4)Cl]BF4 (PdL4) were prepared by reacting the corresponding ligands, 2,6-bis[(1H-pyrazol-1-yl)methyl]pyridine (L1), bis[2-(1H-pyrazol-1-yl)ethyl]amine (L2), bis[2-(1H-pyrazol-1-yl)ethyl]ether (L3), and bis[2-(1H-prazol-1-yl)ethyl]sulphide (L4) with [PdCl2(NCMe)]2 in the presence NaBF4. The solid-state structures of complexes PdL1-PdL4 confirmed a tridentate coordination mode, with one chloro ligand completing the coordination sphere to afford square-planar complexes. Chemical behaviour of the complexes in solution confirms their stability in both aqueous and DMSO stock media. The electrochemical properties of the compounds showed irreversible two-electron reduction process. Kinetic reactivity of Pd complexes with the biological nucleophiles viz, thiourea (Tu), L-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) followed the order: PdL2 < PdL3 < PdL4, and PdL2 < PdL1. The kinetic reactivity is subject to the electronic effects of the spectator ligand(s), and the trend was supported by the DFT computed results. The palladium complexes PdL1-PdL4 bind to calf thymus (CT-DNA) via intercalation mode. In addition, the bovine serum albumin (BSA) showed good binding affinity to the complexes. The mode of quenching mechanism of the intrinsic fluorescence of CT-DNA and BSA by the complexes was found to be static. The order of interactions of the complexes with DNA and BSA was in tandem with the rate of substitution kinetics. The complexes, however, displayed relatively low cytotoxicity (IC50 > 100 µM) when tested against the human cervical adenocarcinoma (HeLa) cell line and the transformed human lung fibroblast cell line (MRC-5 SV2).


Assuntos
Antineoplásicos , Complexos de Coordenação , Aminas , Antineoplásicos/química , Complexos de Coordenação/química , DNA/química , Dimetil Sulfóxido , Éteres , Guanosina Difosfato , Guanosina Monofosfato , Humanos , Cinética , Ligantes , Metionina/química , Paládio/química , Piridinas/química , Soroalbumina Bovina/química , Sulfetos , Tioureia
8.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566299

RESUMO

In this study, chlorophenyltin(IV) [(C6H5)(Cl)Sn(L)2] and diphenyltin(IV) [(C6H5)2Sn(L)2] of N-methyl-N-hydroxyethyldithiocarbamate were prepared and characterized using various spectroscopic methods (FTIR, 1H, 13C, and 119Sn NMR) and elemental analysis. The FTIR and NMR spectral data, used to establish the structure of the compounds, showed the formation of the complexes via coordination to the two sulfur atoms from the dithiocarbamate ligand and the respective phenyltin(IV) derivatives. This coordination mode was further explored by DFT calculations, which showed that the bonding around the Sn center in [(C6H5)2Sn(L)2] was more asymmetric compared to the bonding around [(C6H5)(Cl)Sn(L)2]. However, the Sn-S bonds in [(C6H5)(Cl)Sn(L)2] were found to be more covalent than those in [(C6H5)2Sn(L)2]. Furthermore, the charge density of the frontier orbitals showed that the Sn atom in the complexes is relatively electrophilic and the Sn atom in [(C6H5)2Sn(L)2] has a lower atomic dipole moment than that of [(C6H5)(Cl)Sn(L)2]. The cytotoxicity and anti-inflammatory study revealed that [(C6H5)2Sn(L)2], with the higher number of phenyl substituents, has a higher potency than [(C6H5)(Cl)Sn(L)2]. The bio-efficacy study of these complexes as cytotoxic and anti-inflammatory agents showed that the complexes possessed moderate to high activity in comparison to the camptothecin and diclofenac in each case. Nevertheless, the diphenyltin(IV) derivative [(C6H5)2Sn(L)2] was found to possess a better activity than its counterpart due to the number of phenyl rings attached to the Sn center.


Assuntos
Compostos Orgânicos de Estanho , Cristalografia por Raios X , Teoria da Densidade Funcional , Ligantes , Espectroscopia de Ressonância Magnética , Compostos Orgânicos de Estanho/química
9.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163718

RESUMO

Silver nanoparticles (AgNPs) are the most commercialized nanomaterials and presumed to be biocompatible based on the biological effects of the bulk material. However, their physico-chemical properties differ significantly to the bulk materials and are associated with unique biological properties. The study investigated the antimicrobial and cytotoxicity effects of AgNPs synthesized using gum arabic (GA), sodium borohydride (NaBH4), and their combination as reducing agents. The AgNPs were characterized using ultraviolet-visible spectrophotometry (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The anti-bacterial activity was assessed using agar well diffusion and microdilution assays, and the cytotoxicity effects on Caco-2, HT-29 and KMST-6 cells using MTT assay. The GA-synthesized AgNPs (GA-AgNPs) demonstrated higher bactericidal activity against all bacteria, and non-selective cytotoxicity towards normal and cancer cells. AgNPs reduced by NaBH4 (C-AgNPs) and the combination of GA and NaBH4 (GAC-AgNPs) had insignificant anti-bacterial activity and cytotoxicity at ≥50 µg/mL. The study showed that despite the notion that AgNPs are safe and biocompatible, their toxicity cannot be overruled and that their toxicity can be channeled by using biocompatible polymers, thereby providing a therapeutic window at concentrations that are least harmful to mammalian cells but toxic to bacteria.


Assuntos
Acacia , Nanopartículas Metálicas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Células CACO-2 , Goma Arábica/farmacologia , Humanos , Mamíferos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Biomol Struct Dyn ; 40(8): 3697-3705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33225839

RESUMO

Schistosomiasis is an infectious tropical disease caused by parasitic flatworm of the genus Schistosoma. This debilitating disease chronically infects about 200 million people globally and management relies on chemotherapy. Unfortunately, the solely available schistosomicide (praziquantel) against all forms of adult schistosmes has been faced with numerous drawbacks. Thus, there is an urgent need to design and develop a new regimen for schistosomiasis. In light of this, the current study focuses on inhibiting the schistosome glucose transporter 4 (SGTP4) as a therapeutic candidate for schistosomiasis. Several studies have revealed that Schistosoma parasites require an adequate amount of energy/glucose to survive. We modelled the 3D structure and subsequently used the homology model for docking with praziquantel (PZQ), Licochalcone A, Licarin and Harmonine. The docked complexes were subjected to molecular dynamics using Desmond system of Schrodinger software. Furthermore, the pharmacokinetic parameters of the ligands were investigated using the QikProp tool in the Schrodinger-2019-4 software suite. After performing all the computational analysis, our findings reveal that all four ligands were able to inhibit SGTP4 effectively through the higher glide G score (dock score) of -5.8 (-5.8), -6.5 (-6.4), -7.3 (-7.3) and -4.9 (-4.9) in kcal/mol for praziquantel, licochalcone A, licarin and harmonine respectively against the protein. The molecular simulation further confirmed that the stability of the complexes formed between the ligands and protein is excellent. More so, all the ligands fulfilled oral drugability of both the Lipinski's rule of five and Veber's rules.The findings in this present study provide new useful insights for the design of drugs which can serve as an alternative to praziquantel in the treatment of schistosomiasis through the inhibition of SGTP4.Communicated by Freddie R. Salsbury.


Assuntos
Anti-Helmínticos , Esquistossomose , Animais , Anti-Helmínticos/farmacologia , Humanos , Ligantes , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia
11.
Materials (Basel) ; 14(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34947447

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has gained worldwide attention and has prompted the development of innovative diagnostics, therapeutics, and vaccines to mitigate the pandemic. Diagnostic methods based on reverse transcriptase-polymerase chain reaction (RT-PCR) technology are the gold standard in the fight against COVID-19. However, this test might not be easily accessible in low-resource settings for the early detection and diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of access to well-equipped clinical laboratories, requirement for the high level of technical competence, and the cost of the RT-PCR test are the major limitations. Moreover, RT-PCR is unsuitable for application at the point-of-care testing (PoCT) as it is time-consuming and lab-based. Due to emerging mutations of the virus and the burden it has placed on the health care systems, there is a growing urgency to develop sensitive, selective, and rapid diagnostic devices for COVID-19. Nanotechnology has emerged as a versatile technology in the production of reliable diagnostic tools for various diseases and offers new opportunities for the development of COVID-19 diagnostic systems. This review summarizes some of the nano-enabled diagnostic systems that were explored for the detection of SARS-CoV-2. It highlights how the unique physicochemical properties of nanoparticles were exploited in the development of novel colorimetric assays and biosensors for COVID-19 at the PoCT. The potential to improve the efficiency of the current assays, as well as the challenges associated with the development of these innovative diagnostic tools, are also discussed.

12.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681930

RESUMO

Since antiquity, silver-based therapies have been used in wound healing, wound care and management of infections to provide adequate healing. These therapies are associated with certain limitations, such as toxicity, skin discolouration and bacterial resistance, which have limited their use. As a result, new and innovative wound therapies, or strategies to improve the existing therapies, are sought after. Silver nanoparticles (AgNPs) have shown the potential to circumvent the limitations associated with conventional silver-based therapies as described above. AgNPs are effective against a broad spectrum of microorganisms and are less toxic, effective at lower concentrations and produce no skin discolouration. Furthermore, AgNPs can be decorated or coupled with other healing-promoting materials to provide optimum healing. This review details the history and impact of silver-based therapies leading up to AgNPs and AgNP-based nanoformulations in wound healing. It also highlights the properties of AgNPs that aid in wound healing and that make them superior to conventional silver-based wound treatment therapies.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Prata/química , Cicatrização , Animais , Humanos , Nanopartículas Metálicas/química
13.
Heliyon ; 7(8): e07693, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430727

RESUMO

Methyltin(IV) of butyltin(IV)-N-hydroxyethyl dithiocarbamate complexes, represented as [(CH3)2Sn(L(OH))2] and [(C4H9)2Sn(L(OH))2] respectively were synthesized and characterized using spectroscopic techniques (1H, 13C and 119Sn NMR) and elemental analysis. Both infrared and NMR data showed that, the complexes were formed via two sulphur atoms of the dithiocarbamate group. This mode of coordination was further supported by the DFT calculation, which suggested the formation of a distorted octahedral geometry around the tin atom. The complexes were screened for their antioxidant, cytotoxicity and anti-inflammatory properties. Four different assays including DPPH, nitric oxide, reducing power and hydrogen peroxides were used for the antioxidant studies, while an in vitro anti-inflammatory study was done using albumin denaturation assay. The complexes showed good antioxidant activity, especially in the DPPH assay. Butyltin(IV)-N-hydroxyethyl dithiocarbamate showed better cytotoxicity activity compared to methyltin(IV)-N-hydroxyethyl dithiocarbamate in the selected cell lines, which included KMST-6, Caco-2 and A549 cell lines. The anti-inflammatory activities revealed that the two complexes have useful activities better than diclofenac used as control drug.

14.
Dalton Trans ; 50(23): 8127-8143, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34027534

RESUMO

Treatments of N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L1), N-(quinolin-8-yl)pyrazine-2-carboxamide (L2), N-(quinolin-8-yl)picolinamide (L3) and N-(quinolin-8-yl)quinoline-2-carboxamide (L4) with [PdCl2(NCMe)]2 afforded the corresponding Pd(ii) complexes, [Pd(L1)Cl] (PdL1); [Pd(L2)Cl] (PdL2); [Pd(L3)Cl] (PdL3); and [Pd(L4)Cl] (PdL4) in moderate yields. Structural characterisation of the compounds was achieved by NMR and FT-IR spectroscopies, elemental analyses and single crystal X-ray crystallography. The solid-state structures of complexes PdL2-PdL4 established the presence of one tridentate carboxamide and Cl ligands around the Pd(ii) coordination sphere, to give distorted square planar complexes. Electrochemical investigations of PdL1-PdL4 showed irreversible one-electron oxidation reactions. Kinetics reactivity of the complexes towards bio-molecules, thiourea (Tu), l-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, in tandem with the density functional theory (DFT) data. The complexes bind favourably to calf thymus (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions agrees with the substitution kinetics trends. The in vitro cytotoxic activities of PdL1-PdL4 were examined in cancer cell lines A549, PC-3, HT-29, Caco-2, and HeLa, and a normal cell line, KMST-6. Overall, PdL1 and PdL3 displayed potent cytotoxic effects on A549, PC-3 HT-29 and Caco-2 comparable to cisplatin. All the investigated complexes exhibited lower toxicity on normal cells than cisplatin.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Paládio/farmacologia , Soroalbumina Bovina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cinética , Estrutura Molecular , Paládio/química , Células Tumorais Cultivadas
15.
Biotechnol Rep (Amst) ; 28: e00560, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33299809

RESUMO

The development of cancer therapies has become difficult due to high metastasis, and lack of tissue selectivity, which in most cases affects normal cells. Demand for anticancer therapy is therefore increasing on daily basis. Gold nanoparticles (AuNPs) have many applications in biomedical field. Biological synthesis of AuNPs using aqueous extract of Crassocephalum rubens (AECR) was designed to investigate the in vitro anticancer potential. The synthesized AuNPs were characterized by UV-vis spectroscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy. The characterization results showed the formation of green AuNPs of wavelength 538 nm, and mostly spherical AuNPs with 20 ±â€¯5 nm size. Significant anticancer activity of the AECR-AuNPs on MCF-7 and Caco-2 cells was noted at higher concentrations (125 and 250 µg/mL) during 24 and at all concentrations tested during 48 h. It can therefore be concluded that AECR leaves can mediate stable AuNPs with anticancer properties.

16.
Heliyon ; 6(11): e05501, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33251363

RESUMO

The use of plant and plant products in the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) is made possible because of the natural inherent phytochemicals responsible for the reduction of respective metallic salts to nanoparticle forms, and ensuring therapeutic applicability. In this study, synthesis of AgNPs and AuNPs was performed using two different aqueous extraction methods for Crassocephalum rubens: maceration using laboratory method of extraction (cold aqueous extract of Crassocephalum rubens (AECR)), and decoction using traditional healer's method of extraction (hot aqueous crude extract of Crassocephalum rubens (CECR)). The synthesized nanoparticles were characterized using various methods, and in vitro antioxidant potential were thereafter investigated. The characterization results indicated the formation of mostly spherical-shaped AgNPs and AuNPs with surface plasmon resonance (SPR) band of 470 nm and 540 nm, respectively. The nanoparticles possess high antioxidant potentials but AECR synthesized AuNPs exhibited the least phytochemical contents and antioxidant potential when compared to other nanoparticles. It can therefore be concluded that extraction method and nanoparticle type are important factors that could influence the antioxidant properties of the nanoparticles. Further studies using these nanoparticles as anticancer or anti-inflammatory agent in both in vitro and in vivo are underway.

17.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623294

RESUMO

Colorectal cancer (CRC) is the second-leading cause of cancer death and a major public health problem. Nearly 80% CRC cases are diagnosed after the disease have metastasized and are often too advanced for treatment. Small non-coding RNA guides argonaute protein to their specific target for regulation as the sole of RNA induced silencing complex for gene silencing. These non-coding RNA for example microRNA, are thought to play a key role in affecting the efficiency of gene regulation in cancer, especially CRC. Understanding the mechanism at the molecular level could lead to improved diagnosis, treatment, and management decisions for CRC. The study aimed to predict the molecular mechanism of gene regulation based microRNA-mRNA duplex as a lead in the silencing mechanism. Five candidate microRNAs were identified through the in silico approach. The MicroRNA target prediction and subsequent correlation, and prioritization were performed using miRTarBase, gbCRC and CoReCG, and DAVID databases respectively. Protein selection and preparation were carried out using PDB and Schrödinger suits. The molecular docking analysis was performed using PATCHDOCK webserver and visualized by discovery studio visualizer. The results of the study reveal that the candidate microRNAs have strong binding affinity towards their targets suggesting a crucial factor in the silencing mechanism. Furthermore, the molecular docking of the receptor to both the microRNA and microRNA-mRNA duplex were analyzed computationally to understand their interaction at the molecular level. Conclusively, the study provides an explanation for understanding the microRNAs-based gene regulation (silencing mechanism) in CRC.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Linhagem Celular Tumoral , Biologia Computacional/métodos , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Ligação de Hidrogênio , MicroRNAs/química , Modelos Moleculares , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
18.
Food Sci Nutr ; 6(7): 1803-1810, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30349669

RESUMO

The phenolic extract of Senecio biafrae leaves was investigated to determine the in vitro antioxidant, phenolic profiles, and inhibition of key enzymes relevant to type II diabetes mellitus (α-amylase and α-glucosidase) and Alzheimer's disease (acetylcholinesterase and butrylcholinesterase). The phenolic extract demonstrated significant scavenging abilities against all in vitro antioxidant parameters assessed. Reversed-phase HPLC of the extract revealed the presence of gallic acid, chlorogenic, caffeic acid, rutin, quercetin, and kaempferol. The extract also inhibited activities of α-amylase (IC 50 = 126.90 µg/ml), α-glucosidase (IC 50 = 139.66 µg/ml), acetylcholinesterase (IC 50 = 347.22 µg/ml), and butrylcholinesterase (IC 50 = 378.79 µg/ml), which may be attributed to the antioxidant potential of the extract and its phenolic composition. Therefore, this study suggests that the leaves of S. biafrae may be useful in the management of diabetes mellitus and Alzheimer's disease.

19.
J Evid Based Complementary Altern Med ; 22(4): 538-543, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29279019

RESUMO

This study sought to investigate the ameliorative effects of ethanol extract Artocarpus heterophyllus (EAH) in alloxan-induced diabetic rats. The rats were divided into 6 groups, with groups 1 and 2 serving as nondiabetic and diabetic control, respectively; group 3 serving as diabetic rats treated with 5 mg/kg glibenclamide; and groups 4 to 6 were diabetic rats treated with 50, 100, and 150 mg/kg of EAH, respectively. Assays determined were serum insulin, lipid peroxidation, and antioxidant enzyme activities. EAH stem bark reduced fasting blood glucose and lipid peroxidation levels and increased serum insulin levels and activities of antioxidant enzymes. Data obtained demonstrated the ability of EAH stem bark to ameliorate pancreatic ß-cell dysfunction in alloxan-induced diabetic rats.


Assuntos
Artocarpus , Diabetes Mellitus Experimental/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Aloxano , Animais , Glicemia/análise , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Insulina/sangue , Células Secretoras de Insulina/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/análise , Fitoterapia , Casca de Planta , Ratos , Ratos Wistar
20.
J Ethnopharmacol ; 188: 153-8, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27154407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Crassocephalum rubens is found throughout tropical Africa including the Indian Ocean islands. The leaves are commonly eaten in form of soups and sauces in South-Western Nigeria, also in other humid zones of Africa. Traditionally, it is used as an antidote against any form of poisoning; used to treat stomach and liver complaints; and externally to treat burns, sore eyes, earache, leprosy and breast cancer. In this study, acute and subacute toxicity of aqueous extract of C. rubens leaves was evaluated in rats in order to assess its safety profile. MATERIALS AND METHODS: In acute toxicity study, rats were given a single oral administration of aqueous extract of C. rubens leaves at graded doses (250-5000mg/kg). The animals were monitored for behavioural changes and possible mortality over a period of 24h and thereafter, for 14 days. In the subacute toxicity study, rats of both sexes were administered C. rubens orally at doses of 250mg/kg, 500mg/kg, 750mg/kg and 1000mg/kg body weight daily, for 28 days. Rats were observed weekly for any changes in general behaviour and body weights. In addition, other relevant parameters were assayed at the end of the main and reversibility study periods. RESULTS: There was no observed adverse effect; including mortality in the animals. The extract caused no significant difference in the body weights as well as organs weights of treated groups when compared with the control groups. Haematological and biochemical parameters also revealed no toxic effects of the extract on rats. Histological assessments were normal in liver and kidney. CONCLUSIONS: It can therefore be suggested based on the results from this study that aqueous extract of C. rubens leaves, at dosage levels up to 1000mg/kg, is non-toxic and could also offer protection on some body tissues. Aqueous extract of C. rubens could therefore, be considered safe. This study supports the application of Crassocephalum rubens in traditional medicine.


Assuntos
Asteraceae/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Solventes/química , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda , Água/química , Animais , Biomarcadores/sangue , Biomarcadores/urina , Peso Corporal/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos Wistar , Medição de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA