Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758924

RESUMO

Information on the structure of molecules, retrieved via biochemical databases, plays a pivotal role in various disciplines, including metabolomics, systems biology, and drug discovery. No such database can be complete and it is often necessary to incorporate data from several sources. However, the molecular structure for a given compound is not necessarily consistent between databases. This article presents StructRecon, a novel tool for resolving unique molecular structures from database identifiers. Currently, identifiers from BiGG, ChEBI, Escherichia coli Metabolome Database (ECMDB), MetaNetX, and PubChem are supported. StructRecon traverses the cross-links between entries in different databases to construct what we call identifier graphs. The goal of these graphs is to offer a more complete view of the total information available on a given compound across all the supported databases. To reconcile discrepancies met during the traversal of the databases, we develop an extensible model for molecular structure supporting multiple independent levels of detail, which allows standardization of the structure to be applied iteratively. In some cases, our standardization approach results in multiple candidate structures for a given compound, in which case a random walk-based algorithm is used to select the most likely structure among incompatible alternatives. As a case study, we applied StructRecon to the EColiCore2 model. We found at least one structure for 98.66% of its compounds, which is more than twice as many as possible when using the databases in more standard ways not considering the complex network of cross-database references captured by our identifier graphs. StructRecon is open-source and modular, which enables support for more databases in the future.

2.
J Chem Inf Model ; 62(22): 5513-5524, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36326605

RESUMO

An "imaginary transition structure" overlays the molecular graphs of the educt and product sides of an elementary chemical reaction in a single graph to highlight the changes in bond structure. We generalize this idea to reactions with complex mechanisms in a formally rigorous approach based on composing arrow-pushing steps represented as graph-transformation rules to construct an overall composite rule and a derived transition structure. This transition structure retains information about transient bond changes that are invisible at the overall level and can be constructed automatically from an existing database of detailed enzymatic mechanisms. We use the construction to (i) illuminate the distribution of catalytic action across enzymes and substrates and (ii) to search in a large database for reactions of known or unknown mechanisms that are compatible with the mechanism captured by the constructed composite rule.


Assuntos
Catálise , Bases de Dados Factuais
3.
Bioinformatics ; 37(Suppl_1): i392-i400, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252947

RESUMO

MOTIVATION: The design of enzymes is as challenging as it is consequential for making chemical synthesis in medical and industrial applications more efficient, cost-effective and environmentally friendly. While several aspects of this complex problem are computationally assisted, the drafting of catalytic mechanisms, i.e. the specification of the chemical steps-and hence intermediate states-that the enzyme is meant to implement, is largely left to human expertise. The ability to capture specific chemistries of multistep catalysis in a fashion that enables its computational construction and design is therefore highly desirable and would equally impact the elucidation of existing enzymatic reactions whose mechanisms are unknown. RESULTS: We use the mathematical framework of graph transformation to express the distinction between rules and reactions in chemistry. We derive about 1000 rules for amino acid side chain chemistry from the M-CSA database, a curated repository of enzymatic mechanisms. Using graph transformation, we are able to propose hundreds of hypothetical catalytic mechanisms for a large number of unrelated reactions in the Rhea database. We analyze these mechanisms to find that they combine in chemically sound fashion individual steps from a variety of known multistep mechanisms, showing that plausible novel mechanisms for catalysis can be constructed computationally. AVAILABILITY AND IMPLEMENTATION: The source code of the initial prototype of our approach is available at https://github.com/Nojgaard/mechsearch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Bases de Dados Factuais , Expressão Gênica , Humanos
4.
Cell Rep ; 34(5): 108710, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535053

RESUMO

Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.


Assuntos
Metabolismo dos Lipídeos/genética , Fígado/fisiologia , Animais , Ritmo Circadiano , Camundongos
5.
J Cheminform ; 10(1): 19, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29623440

RESUMO

In synthesis planning, the goal is to synthesize a target molecule from available starting materials, possibly optimizing costs such as price or environmental impact of the process. Current algorithmic approaches to synthesis planning are usually based on selecting a bond set and finding a single good plan among those induced by it. We demonstrate that synthesis planning can be phrased as a combinatorial optimization problem on hypergraphs by modeling individual synthesis plans as directed hyperpaths embedded in a hypergraph of reactions (HoR) representing the chemistry of interest. As a consequence, a polynomial time algorithm to find the K shortest hyperpaths can be used to compute the K best synthesis plans for a given target molecule. Having K good plans to choose from has many benefits: it makes the synthesis planning process much more robust when in later stages adding further chemical detail, it allows one to combine several notions of cost, and it provides a way to deal with imprecise yield estimates. A bond set gives rise to a HoR in a natural way. However, our modeling is not restricted to bond set based approaches-any set of known reactions and starting materials can be used to define a HoR. We also discuss classical quality measures for synthesis plans, such as overall yield and convergency, and demonstrate that convergency has a built-in inconsistency which could render its use in synthesis planning questionable. Decalin is used as an illustrative example of the use and implications of our results.

6.
BMC Bioinformatics ; 14 Suppl 2: S18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23368759

RESUMO

The triplet distance is a distance measure that compares two rooted trees on the same set of leaves by enumerating all sub-sets of three leaves and counting how often the induced topologies of the tree are equal or different. We present an algorithm that computes the triplet distance between two rooted binary trees in time O (n log2 n). The algorithm is related to an algorithm for computing the quartet distance between two unrooted binary trees in time O (n log n). While the quartet distance algorithm has a very severe overhead in the asymptotic time complexity that makes it impractical compared to O (n2) time algorithms, we show through experiments that the triplet distance algorithm can be implemented to give a competitive wall-time running time.


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Filogenia , Software
7.
Biology (Basel) ; 2(4): 1189-209, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24833220

RESUMO

Distance measures between trees are useful for comparing trees in a systematic manner, and several different distance measures have been proposed. The triplet and quartet distances, for rooted and unrooted trees, respectively, are defined as the number of subsets of three or four leaves, respectively, where the topologies of the induced subtrees differ. These distances can trivially be computed by explicitly enumerating all sets of three or four leaves and testing if the topologies are different, but this leads to time complexities at least of the order n3 or n4 just for enumerating the sets. The different topologies can be counte dimplicitly, however, and in this paper, we review a series of algorithmic improvements that have been used during the last decade to develop more efficient algorithms by exploiting two different strategies for this; one based on dynamic programming and another based oncoloring leaves in one tree and updating a hierarchical decomposition of the other.

8.
BMC Bioinformatics ; 7: 29, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423304

RESUMO

BACKGROUND: The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Theta(n3) algorithm upon which all existing implementations are based. RESULTS: In this paper we present techniques for speeding up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2) but the worst-case remains O(n3). We empirically evaluate the performance of our algoritms on distance matrices obtained from the Pfam collection of alignments. The experiments indicate that the running time of our algorithms evolve as Theta(n2) on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical neighbor-joining method. CONCLUSION: The experiments show that our algorithms also yield a significant speed-up, already for medium sized instances.


Assuntos
Biologia Computacional/métodos , Algoritmos , Animais , Análise por Conglomerados , Simulação por Computador , Evolução Molecular , Humanos , Funções Verossimilhança , Modelos Estatísticos , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA