Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(1): 185-194, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38156502

RESUMO

The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.


Assuntos
Cianobactérias , Percloratos , Humanos , Percloratos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Estresse Oxidativo
2.
Front Microbiol ; 14: 1150224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266021

RESUMO

Cyanobacteria are gaining considerable interest as a method of supporting the long-term presence of humans on the Moon and settlements on Mars due to their ability to produce oxygen and their potential as bio-factories for space biotechnology/synthetic biology and other applications. Since many unknowns remain in our knowledge to bridge the gap and move cyanobacterial bioprocesses from Earth to space, we investigated cell division resumption on the rehydration of dried Chroococcidiopsis sp. CCMEE 029 accumulated DNA damage while exposed to space vacuum, Mars-like conditions, and Fe-ion radiation. Upon rehydration, the monitoring of the ftsZ gene showed that cell division was arrested until DNA damage was repaired, which took 48 h under laboratory conditions. During the recovery, a progressive DNA repair lasting 48 h of rehydration was revealed by PCR-stop assay. This was followed by overexpression of the ftsZ gene, ranging from 7.5- to 9-fold compared to the non-hydrated samples. Knowing the time required for DNA repair and cell division resumption is mandatory for deep-space experiments that are designed to unravel the effects of reduced/microgravity on this process. It is also necessary to meet mission requirements for dried-sample implementation and real-time monitoring upon recovery. Future experiments as part of the lunar exploration mission Artemis and the lunar gateway station will undoubtedly help to move cyanobacterial bioprocesses beyond low Earth orbit. From an astrobiological perspective, these experiments will further our understanding of microbial responses to deep-space conditions.

3.
Front Microbiol ; 13: 933404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992689

RESUMO

Deserts represent extreme habitats where photosynthetic life is restricted to the lithic niche. The ability of rock-inhabiting cyanobacteria to modify their photosynthetic apparatus and harvest far-red light (near-infrared) was investigated in 10 strains of the genus Chroococcidiopsis, previously isolated from diverse endolithic and hypolithic desert communities. The analysis of their growth capacity, photosynthetic pigments, and apcE2-gene presence revealed that only Chroococcidiopsis sp. CCMEE 010 was capable of far-red light photoacclimation (FaRLiP). A total of 15 FaRLiP genes were identified, encoding paralogous subunits of photosystem I, photosystem II, and the phycobilisome, along with three regulatory elements. CCMEE 010 is unique among known FaRLiP strains by undergoing this acclimation process with a significantly reduced cluster, which lacks major photosystem I paralogs psaA and psaB. The identification of an endolithic, extremotolerant cyanobacterium capable of FaRLiP not only contributes to our appreciation of this phenotype's distribution in nature but also has implications for the possibility of oxygenic photosynthesis on exoplanets.

4.
Front Microbiol ; 12: 660050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122375

RESUMO

A genome-wide investigation of the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 identified three genes coding superoxide dismutases (SODs) annotated as MnSODs (SodA2.1 and SodA2.2) and Cu/ZnSOD (SodC) as suggested by the presence of metal-binding motifs and conserved sequences. Structural bioinformatics analysis of the retrieved sequences yielded modeled MnSODs and Cu/ZnSOD structures that were fully compatible with their functional role. A signal-peptide bioinformatics prediction identified a Tat signal peptide at the N-terminus of the SodA2.1 that highlighted its transport across the thylakoid/cytoplasmic membranes and release in the periplasm/thylakoid lumen. Homologs of the Tat transport system were identified in Chroococcidiopsis sp. CCMEE 029, and the molecular docking simulation confirmed the interaction between the signal peptide of the SodA2.1 and the modeled TatC receptor, thus supporting the SodA2.1 translocation across the thylakoid/cytoplasmic membranes. No signal peptide was predicted for the MnSOD (SodA2.2) and Cu/ZnSOD, thus suggesting their occurrence as cytoplasmic proteins. No FeSOD homologs were identified in Chroococcidiopsis sp. CCMEE 029, a feature that might contribute to its desiccation tolerance since iron produces hydroxyl radical via the Fenton reaction. The overall-overexpression in response to desiccation of the three identified SOD-coding genes highlighted the role of SODs in the antioxidant enzymatic defense of this anhydrobiotic cyanobacterium. The periplasmic MnSOD protected the cell envelope against oxidative damage, the MnSOD localized in the thylakoid lumen scavengered superoxide anion radical produced during the photosynthesis, while the cytoplasmic MnSOD and Cu/ZnSOD reinforced the defense against reactive oxygen species generated at the onset of desiccation. Results contribute to decipher the desiccation-tolerance mechanisms of this cyanobacterium and allow the investigation of its oxidative stress response during future space experiments in low Earth orbit and beyond.

5.
Astrobiology ; 21(5): 541-550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956489

RESUMO

Dried biofilms of Chroococcidiopsis sp. CCMEE 029 were revived after a 672-day exposure to space vacuum outside the International Space Station during the EXPOSE-R2 space mission. After retrieval, they were air-dried stored for 3.5 years. Space vacuum reduced cell viability and increased DNA damage compared to air-dried storage for 6 years under laboratory conditions. Long exposure times to space vacuum and extreme dryness decrease the changes of survival that ultimately depend on DNA damage repair upon rehydration, and hence, an in silico analysis of Chroococcidiopsis sp. CCMEE 029's genome was performed with a focus on DNA repair pathways. The analysis identified a high number of genes that encode proteins of the homologous recombination RecF pathway and base excision repair that were over-expressed during 1 and 6 h rehydration of space-vacuum exposed biofilms. This suggests that Chroococcidiopsis developed a survival strategy against desiccation, with DNA repair playing a key role, which allowed the revival of biofilms exposed to space vacuum. Unravelling how long anhydrobiotic cyanobacteria can persist under space vacuum followed by prolonged air-dried storage is relevant to future astrobiological experiments that use space platforms and might require prolonged air-dried storage of the exposed samples before retrieval to Earth.


Assuntos
Cianobactérias , Meio Ambiente Extraterreno , Biofilmes , Planeta Terra , Raios Ultravioleta , Vácuo
6.
Life (Basel) ; 10(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521820

RESUMO

Carotenoids are promising targets in our quest to search for life on Mars due to their biogenic origin and easy detection by Raman spectroscopy, especially with a 532 nm excitation thanks to resonance effects. Ionizing radiations reaching the surface and subsurface of Mars are however detrimental for the long-term preservation of biomolecules. We show here that desiccation can protect carotenoid Raman signatures in the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 even after high-dose gamma irradiation. Indeed, while the height of the carotenoids Raman peaks was considerably reduced in hydrated cells exposed to gamma irradiation, it remained stable in dried cells irradiated with the highest tested dose of 113 kGy of gamma rays, losing only 15-20% of its non-irradiated intensity. Interestingly, even though the carotenoid Raman signal of hydrated cells lost 90% of its non-irradiated intensity, it was still detectable after exposure to 113 kGy of gamma rays. These results add insights into the preservation potential and detectability limit of carotenoid-like molecules on Mars over a prolonged period of time and are crucial in supporting future missions carrying Raman spectrometers to Mars' surface.

7.
Life (Basel) ; 9(4)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766612

RESUMO

Two anhydrobiotic strains of the cyanobacterium Chroococcidiopsis, namely CCMEE 029 and CCMEE 171, isolated from the Negev Desert in Israel and from the Dry Valleys in Antarctica, were exposed to salty-ice simulations. The aim of the experiment was to investigate the cyanobacterial capability to survive under sub-freezing temperatures in samples simulating the environment of icy worlds. The two strains were mixed with liquid solutions having sub-eutectic concentration of Na2SO4, MgSO4 and NaCl, then frozen down to different final temperatures (258 K, 233 K and 203 K) in various experimental runs. Both strains survived the exposure to 258 K in NaCl solution, probably as they migrated in the liquid veins between ice grain boundaries. However, they also survived at 258 K in Na2SO4 and MgSO4-salty-ice samples-that is, a temperature well below the eutectic temperature of the solutions, where liquid veins should not exist anymore. Moreover, both strains survived the exposure at 233 K in each salty-ice sample, with CCMEE 171 showing an enhanced survivability, whereas there were no survivors at 203 K. The survival limit at low temperature was further extended when both strains were exposed to 193 K as air-dried cells. The results suggest that vitrification might be a strategy for microbial life forms to survive in potentially habitable icy moons, for example in Europa's icy crust. By entering a dried, frozen state, they could be transported from niches, which became non-habitable to new habitable ones, and possibly return to metabolic activity.

8.
Front Microbiol ; 10: 2312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681194

RESUMO

The survival limits of the desert cyanobacterium Chroococcidiopsis were challenged by rewetting dried biofilms and dried biofilms exposed to 1.5 × 103 kJ/m2 of a Mars-like UV, after 7 years of air-dried storage. PCR-stop assays revealed the presence of DNA lesions in dried biofilms and an increased accumulation in dried-UV-irradiated biofilms. Different types and/or amounts of DNA lesions were highlighted by a different expression of uvrA, uvrB, uvrC, phrA, and uvsE genes in dried-rewetted biofilms and dried-UV-irradiated-rewetted biofilms, after rehydration for 30 and 60 min. The up-regulation in dried-rewetted biofilms of uvsE gene encoding an UV damage endonuclease, suggested that UV-damage DNA repair contributed to the repair of desiccation-induced damage. While the phrA gene encoding a photolyase was up-regulated only in dried-UV-irradiated-rewetted biofilms. Nucleotide excision repair genes were over-expressed in dried-rewetted biofilms and dried-UV-irradiated-rewetted biofilms, with uvrC gene showing the highest increase in dried-UV-irradiated-rewetted biofilms. Dried biofilms preserved intact mRNAs (at least of the investigated genes) and 16S ribosomal RNA that the persistence of the ribosome machinery and mRNAs might have played a key role in the early phase recovery. Results have implications for the search of extra-terrestrial life by contributing to the definition of habitability of astrobiologically relevant targets such as Mars or planets orbiting around other stars.

9.
Astrobiology ; 19(8): 1008-1017, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30741568

RESUMO

Dried biofilms and dried multilayered planktonic counterparts obtained from three desert strains of Chroococcidiopsis were exposed to low Earth conditions by using the EXPOSE-R2 facility outside the International Space Station. During the space mission, samples in Tray 1 (space vacuum and solar radiation, from λ ≈ 110 nm) and Tray 2 (Mars-like UV flux, λ > 200 nm and Mars-like atmosphere) received total UV (200-400 nm) fluences of about 4.58 × 102 kJ/m2 and 4.92 × 102 kJ/m2, respectively, and 0.5 Gy of cosmic ionizing radiation. Postflight analyses were performed on 2.5-year-old samples due to the space mission duration, from launch to sample return to the lab. The occurrence of survivors was determined by evaluating cell division upon rehydration and damage to the genome and photosynthetic apparatus by polymerase chain reaction-stop assays and confocal laser scanning microscopy. Biofilms recovered better than their planktonic counterparts, accumulating less damage not only when exposed to UV radiation under space and Mars-like conditions but also when exposed in dark conditions to low Earth conditions and laboratory control conditions. This suggests that, despite the shielding provided by top-cell layers being sufficient for a certain degree of survival of the multilayered planktonic samples, the enhanced survival of biofilms was due to the presence of abundant extracellular polymeric substances and to additional features acquired upon drying.


Assuntos
Biofilmes , Cianobactérias/fisiologia , Clima Desértico , Dessecação , Planeta Terra , Meio Ambiente Extraterreno , Marte , Viabilidade Microbiana , Cianobactérias/genética , Dano ao DNA , Matriz Extracelular de Substâncias Poliméricas , Genoma Bacteriano , Fotossíntese , Pigmentos Biológicos/metabolismo , Plâncton/fisiologia
10.
Astrobiology ; 19(2): 158-169, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742497

RESUMO

In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m2 (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.


Assuntos
Cianobactérias/fisiologia , Marte , Cianobactérias/efeitos da radiação , Dano ao DNA , Clima Desértico , Exobiologia , Fotossíntese/efeitos da radiação , Raios Ultravioleta
11.
Astrobiology ; 19(2): 145-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742496

RESUMO

BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.


Assuntos
Cianobactérias/fisiologia , Exobiologia , Líquens/fisiologia , Marte , Biofilmes , Cianobactérias/efeitos da radiação , Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Líquens/efeitos da radiação , Marchantia/fisiologia , Marchantia/efeitos da radiação , Methanosarcina/fisiologia , Methanosarcina/efeitos da radiação , Minerais , Raios Ultravioleta
12.
Extremophiles ; 21(6): 981-991, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28856526

RESUMO

To investigate the relationship between desiccation and the extent of protein oxidation in desert strains of Chroococcidiopsis a selection of 10 isolates from hot and cold deserts and the terrestrial cyanobacterium Chroococcidiopsis thermalis sp. PCC 7203 were exposed to desiccation (air-drying) and analyzed for survival. Strain CCMEE 029 from the Negev desert and the aquatic cyanobacterium Synechocystis sp. PCC 6803 were further investigated for protein oxidation after desiccation (drying over silica gel), treatment with H2O2 up to 1 M and exposure to γ-rays up to 25 kGy. Then a selection of desert strains of Chroococcidiopsis with different survival rates after prolonged desiccation, as well as Synechocystis sp. PCC 6803 and Chroococcidiopsis thermalis sp. PCC 7203, were analyzed for protein oxidation after treatment with 10 and 100 mM of H2O2. Results suggest that in the investigated strains a tight correlation occurs between desiccation and radiation tolerance and avoidance of protein oxidation.


Assuntos
Aclimatação , Cianobactérias/metabolismo , Clima Desértico , Estresse Oxidativo , Tolerância a Radiação , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/efeitos da radiação , Dessecação , Raios gama
13.
Astrobiology ; 17(2): 118-125, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151689

RESUMO

Studying the resistance of cyanobacteria to ionizing radiation provides relevant information regarding astrobiology-related topics including the search for life on Mars, lithopanspermia, and biological life-support systems. Here, we report on the resistance of desert cyanobacteria of the genus Chroococcidiopsis, which were exposed (as part of the STARLIFE series of experiments) in both hydrated and dried states to ionizing radiation with different linear energy transfer values (0.2 to 200 keV/µm). Irradiation with up to 1 kGy of He or Si ions, 2 kGy of Fe ions, 5 kGy of X-rays, or 11.59 kGy of γ rays (60Co) did not eradicate Chroococcidiopsis populations, nor did it induce detectable damage to DNA or plasma membranes. The relevance of these results for astrobiology is briefly discussed. Key Words: Ionizing radiation-Linear energy transfer-Lithopanspermia-Cyanobacterial radioresistance-Chroococcidiopsis-Mars. Astrobiology 17, 118-125.


Assuntos
Cianobactérias/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Membrana Celular/efeitos da radiação , Cianobactérias/genética , Dano ao DNA , DNA Bacteriano/genética , Dessecação , Genoma Bacteriano , Viabilidade Microbiana/efeitos da radiação , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Raios X
14.
Lung Cancer ; 70(3): 271-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20371132

RESUMO

The Aurora proteins are a small family of serine/threonine kinase that function in various stages of mitosis. Current interest in Aurora kinase relates to its role in tumours, and its potential as a therapeutic target. In this work we studied the expression of Aurora kinases A and B and related genes in human mesothelioma tissues and in five mesothelioma cell lines. Moreover, we analyzed the effects of ZM447439 (ZM), an Aurora kinase inhibitor, on cellular growth. Results evidenced an over-expression of Aurora kinase A and related genes in human mesothelioma tissues and an over-expression of Aurora kinases A and B in all cell lines. Moreover, we demonstrated that ZM447439 was able to inhibit cell growth in all cell lines and that this inhibition was due to a specific effect as demonstrated by the reduction in the level of Histone H3 phosphorylation. Our findings support a role of Aurora kinase in mesothelioma and the possibility of using Aurora kinase inhibitors in therapeutic modalities.


Assuntos
Histonas/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Aurora Quinase A , Aurora Quinases , Benzamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma/fisiopatologia , Análise em Microsséries , Fosforilação/efeitos dos fármacos , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Neoplasias Pleurais/fisiopatologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA