RESUMO
This study aimed to investigate the role of TSPAN32, a member of the tetraspanin family, in rheumatoid arthritis (RA). The objective was to assess the expression levels of TSPAN32 in experimental RA models and in RA patient immune cells, exploring its potential as a regulatory factor in RA pathogenesis. The study employed adjuvant-induced arthritis in rats and collagen-induced arthritis (CIA) in mice as experimental models. Ex vivo analyses included evaluating TSPAN32 expression in immune cells at different stages of the disease. In silico data analysis involved examining transcriptomic datasets from drug-naïve and treated RA patients to correlate TSPAN32 expression with clinical parameters. TSPAN32 overexpression experiments in splenocytes from CIA mice aimed to demonstrate its functional impact on antigen-specific immune responses. The animal models revealed a significant downregulation of TSPAN32, particularly in synovial-infiltrating T cells. Also, TSPAN32 overexpression inhibited pro-inflammatory cytokine production in splenocytes. In RA patients, TSPAN32 was consistently downregulated in circulating and synovial-infiltrating T cells, as well as in CD8+ T cells, B cells and NK cells. Drug treatment did not significantly alter TSPAN32 levels. Negative correlations were observed between TSPAN32 expression and inflammatory markers (CRP, ESR) and clinical scores (SDAI) in RA patients. This study suggests that reduced TSPAN32 expression characterizes pathogenic T-cell populations in RA, highlighting its potential as biomarker for inflammation and disease activity. TSPAN32 may play a crucial role in shaping adaptive immune responses in RA, opening avenues for novel therapeutic strategies targeting this tetraspanin family member.
RESUMO
Background: Macrophage migration inhibitory factor (MIF) is a highly conserved cytokine with pleiotropic properties, mainly pro-inflammatory. MIF seems to exert its pro-inflammatory features by binding to its transmembrane cellular receptor CD74. MIF also has CXCR4, which acts as a co-receptor in this inflammatory process. Apart from MIF, D-dopachrome tautomerase (DDT) or MIF2, which belongs to the MIF superfamily, also binds to receptor CD74. Therefore, these molecules, MIF, CD74, DDT and CXCR4 are suggested to work together orchestrating an inflammatory process. Diabetes mellitus is characterised by chronic low-grade inflammation. Therefore, the aim of the present study was to evaluate serum and urinary levels of the aforementioned molecules among patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and among healthy controls. Methods: We enrolled 13 patients with T1DM, 74 patients with T2DM and 25 healthy individuals as controls. Levels of CD74, CXCR4, DDT, and MIF were measured using ELISA Kits according to the manufacturer's instructions. Results: We documented increased serum MIF levels together with higher urinary CD74 levels among patients with T1DM, when compared to patients with T2DM and healthy adults. In particular, patients with T1DM showed significantly increased levels of MIF compared to T2DM (p = 0.011) and healthy controls (p = 0.0093). CD74 in urine were significantly higher in patients with T1DM compared to those affected with T2DM (p = 0.0302) and healthy group (p = 0.0099). On the contrary, serum CD74 were similar among the three groups. No statistical differences were identified in CXCR4 levels both in serum and in urine of all groups. Patients with T2DM and overweight/obesity had increased urinary levels of CD74, when compared to lean patients with T2DM. Conclusion: The increased serum MIF levels and urinary CD74 levels among patients with T1DM may be attributed to the autoimmune milieu, which characterises patients with T1DM, when compared to patients with T2DM. These two findings merit further attention as they could pave the way for further research regarding the potential beneficial effects of inhibitors of MIF among patients with T1DM, especially in the early stages of T1DM. Finally, the role of inhibitors of MIF could be further explored in the context of obesity among patients with T2DM.
RESUMO
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, with a bad prognosis and lack of targeted therapeutic options. Characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, TNBC is often associated with a significantly lower survival rate compared to other breast cancer subtypes. Our study aimed to explore the prognostic significance of 83 immune-related genes, by using transcriptomic data from the TCGA database. Our analysis identified the Poliovirus Receptor-Like 3 protein (PVRL3) as a critical negative prognostic marker in TNBC patients. Furthermore, we found that the Enhancer of Zeste Homolog 2 (EZH2), a well-known epigenetic regulator, plays a pivotal role in modulating PVRL3 levels in TNBC cancer cell lines expressing EZH2 along with high levels of PVRL3. The elucidation of the EZH2-PVRL3 regulatory axis provides valuable insights into the molecular mechanisms underlying TNBC aggressiveness and opens up potential pathways for personalized therapeutic intervention.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Prognóstico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Nectinas/metabolismo , Nectinas/genéticaRESUMO
COVID-19, caused by the SARS-CoV-2 virus, has caused a global health crisis, necessitating a deeper understanding of its pathophysiology. In this study, we explored the immune and hematological dynamics in COVID-19 patients to gain insights into disease severity and prognosis. Our findings revealed distinct cytokine profiles in moderate and severe cases. IL12A was significantly upregulated in peripheral blood mononuclear cells from moderate cases, suggesting a potential role in initiating an effective immune response. Conversely, severe cases exhibited downregulation of key pro-inflammatory cytokines (IL23A, TNFalpha, IL1B, and IFNG) alongside an upregulation of the immunosuppressive IL10, indicative of a dysregulated immune environment. Serum analysis showed elevated IL6 and IL10 levels in both moderate and severe cases, emphasizing their potential as markers for disease severity. Notably, no significant differences in serum cytokines were found between recovery and lethal cases. In lethal cases of COVID-19, elevated D-dimer, urea, and creatinine correlated with IL6 and IL10. This study contributes valuable information to the ongoing efforts to understand and manage the dysregulated immune responses underlying COVID-19 pathology.
Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Transcriptoma , Humanos , COVID-19/imunologia , COVID-19/sangue , Citocinas/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Idoso , Adulto , Índice de Gravidade de Doença , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Biomarcadores/sangue , PrognósticoRESUMO
In the present study, we have explored the involvement of Toll-like Receptor 4 (TLR4) in atrial fibrillation (AF), by using a meta-analysis of publicly available human transcriptomic data. The meta-analysis revealed 565 upregulated and 267 downregulated differentially expressed genes associated with AF. Pathway enrichment analysis highlighted a significant overrepresentation in immune-related pathways for the upregulated genes. A significant overlap between AF differentially expressed genes and TLR4-modulated genes was also identified, suggesting the potential role of TLR4 in AF-related transcriptional changes. Additionally, the analysis of other Toll-like receptors (TLRs) revealed a significant association with TLR2 and TLR3 in AF-related gene expression patterns. The examination of MYD88 and TICAM1, genes associated with TLR4 signalling pathways, indicated a significant yet nonspecific enrichment of AF differentially expressed genes. In summary, this study offers novel insights into the molecular aspects of AF, suggesting a pathophysiological role of TLR4 and other TLRs. By targeting these specific receptors, new treatments might be designed to better manage AF, offering hope for improved outcomes in affected patients.
Assuntos
Fibrilação Atrial , Receptor 4 Toll-Like , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transcriptoma , Transdução de Sinais/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte VesicularRESUMO
The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.
Assuntos
COVID-19 , Geranium , Viroses , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , SARS-CoV-2 , Flavonoides/farmacologia , Fenóis/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Viroses/tratamento farmacológicoRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by two neuropathological hallmarks: ß-amyloid plaques and tau tangles in the brain. However, the cellular and molecular mechanisms involved in AD are still elusive, which dampens the possibility of finding new and more effective therapeutic interventions. Current in vitro models are limited in modelling the complexity of AD pathogenesis. In this study, we aimed to characterize the AD expression signature upon a meta-analysis of multiple human datasets, including different cell populations from various brain regions, and compare cell-specific alterations in AD patients and in vitro models to highlight the appropriateness and the limitations of the currently available models in recapitulating AD pathology. The meta-analysis showed consistent enrichment of the Rho GTPases signaling pathway among different cell populations and in the models. The accuracy of in vitro models was higher for neurons and lowest for astrocytes. Our study underscores the particularly low fidelity in modelling down-regulated genes across all cell populations. The top enriched pathways arising from meta-analysis of human data differ from the enriched pathways arising from the overlap. We hope that our data will prove useful in indicating a starting point in the development of future, more complex, 3D in vitro models.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Neurônios/metabolismo , Encéfalo/metabolismo , Astrócitos/metabolismoRESUMO
The COVID-19 pandemic has posed a significant threat to public health worldwide. While some patients experience only mild symptoms or no symptoms at all, others develop severe illness, which can lead to death. The host immune response is believed to play a crucial role in determining disease severity. In this study, we investigated the involvement of CD74 and D-DT in COVID-19 patients with different disease severities, by employing an in silico analysis of a publicly available transcriptomic dataset and by measuring their serum levels by ELISA. Our results showed a significant increase in MIF levels in PBMCs from COVID-19 patients, as well as a significant increase in the D-DT levels in PBMCs. However, we observed no modulation in the serum levels of D-DT. We also observed a concordant reduction in the serum levels and PBMCs expression levels of CD74. Furthermore, we found a negative correlation between CD74 serum levels and IL-13. In conclusion, our study sheds light on the involvement of CD74 and D-DT in COVID-19, with potential implications for disease severity and treatment. Further studies are needed to fully elucidate the mechanisms underlying these observations and to explore the potential therapeutic value of targeting CD74 and IL-13 in COVID-19.
RESUMO
Discoid lupus erythematosus (DLE) is a chronic autoimmune disease that primarily affects the skin, causing red, scaly patches that may be disfiguring and can cause permanent scarring. This study aimed to investigate the potential clinical and therapeutic applications of heme oxygenase-1 (HMOX1) in the context of DLE. Immunohistochemical staining and bioinformatics analysis were performed on skin biopsy samples from DLE patients to examine the levels of HMOX1 and to correlate with markers of inflammation. Our study revealed a negative correlation between HMOX1 levels and the inflammatory status of DLE lesions, as well as an inverse correlation between HMOX1 levels and the infiltration of M1 macrophages and activated mastocytes. These findings suggest that HMOX1 plays a crucial role in the regulation of inflammation in DLE and could be a potential therapeutic target and biomarker for DLE.
RESUMO
Multiple sclerosis (MS) is an autoimmune, demyelinating disorder of the central nervous system (CNS) affecting approximately 2.5 million people worldwide. The mechanisms underlying the pathogenesis of MS are still only partially elucidated. Galectins are a family of ß-galactoside-binding lectins that are involved in the regulation of immune and inflammatory responses and have been shown to exert a role in the maintenance of central nervous system (CNS) homeostasis. There has been an increasing interest in the role of galectin-3 in neuroinflammation and neurodegeneration. In the current study, we have evaluated the expression levels of galectin-3 in different cellular populations involved in the etiopathogenesis of MS. We have observed dramatically higher transcriptomic levels of galectin-3 in encephalitogenic CD4+ T cells in a preclinical model of MS, the MOG-induced experimental allergic encephalomyelitis (EAE). Also, significantly higher levels of galectin-3 were found in microglial cells, astrocytes, and oligodendrocytes isolated from the spinal cord of EAE mice, as well as in human MS-related white matter lesions. Modular co-expression analysis revealed that galectin-3 is co-expressed with genes involved in the regulation of microglia, cytokine production, and chemotaxis. This is the first comprehensive analysis of the expression of galectin-3 in MS, further strengthening its potential pathogenetic role in the etiopathogenesis of this CNS autoimmune disorder.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Camundongos , Galectina 3/genética , Galectina 3/metabolismo , Galectinas/genética , Galectinas/metabolismo , Camundongos Endogâmicos C57BL , Regulação para CimaRESUMO
Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.
Assuntos
COVID-19 , Lythraceae , Punica granatum , Humanos , Polifenóis/farmacologia , Taninos Hidrolisáveis/farmacologia , Ácido Elágico/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2RESUMO
Due to the key role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of immunoinflammatory diseases, TNF-α inhibitors have been successfully developed and used in the clinical treatment of autoimmune disorders. Currently, five anti-TNF-α drugs have been approved: infliximab, adalimumab, golimumab, certolizumab pegol and etanercept. Anti-TNF-α biosimilars are also available for clinical use. Here, we will review the historical development as well as the present and potential future applications of anti-TNF-α therapies, which have led to major improvements for patients with several autoimmune diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PS) and chronic endogenous uveitis. Other therapeutic areas are under evaluation, including viral infections, e.g., COVID-19, as well as chronic neuropsychiatric disorders and certain forms of cancer. The search for biomarkers able to predict responsiveness to anti-TNF-α drugs is also discussed.
RESUMO
Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.
Assuntos
Lythraceae , Punica granatum , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Antocianinas , Taninos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Taninos Hidrolisáveis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêuticoRESUMO
Cold tumor immune microenvironment (TIME) of pancreatic cancer (PC) with minimal dendritic cell (DC) and T cell infiltration can result in insufficient immunotherapy and chemotherapy. While gemcitabine (GEM) is a first-line chemotherapeutic drug for PC, its efficacy is reduced by immunosuppression and drug resistance. Ginsenoside Rh2 (Rh2) is known to have anti-cancer and immunomodulatory properties. Combining GEM with Rh2 may thus overcome immunosuppression and induce lasting anti-tumor immunity in PC. Here, we showed that after GEM-Rh2 therapy, there was significantly greater tumor infiltration by DCs. Caspase recruitment domain-containing protein 9 (CARD9), a central adaptor protein, was strongly up-regulated DCs with GEM-Rh2 therapy and promoted anti-tumor immune responses by DCs. CARD9 was found to be a critical target for Rh2 to enhance DC function. However, GEM-Rh2 treatment did not achieve the substantial anti-PC efficacy in CARD9-/- mice as in WT mice. The adoptive transfer of WT DCs to DC-depleted PC mice treated with GEM-Rh2 elicited strong anti-tumor immune responses, although CARD9-/- DCs were less effective than WT DCs. Our results showed that GEM-Rh2 may reverse cold TIME by enhancing tumor immunogenicity and decreasing the levels of immunosuppressive factors, reactivating DCs via the CARD9-BCL10-MALT1/ NF-κB pathway. Our findings suggest a potentially feasible and safe treatment strategy for PC, with a unique mechanism of action. Thus, Rh2 activation of DCs may remodel the cold TIME and optimize GEM chemotherapy for future therapeutic use.
Assuntos
NF-kappa B , Neoplasias Pancreáticas , Animais , Camundongos , NF-kappa B/metabolismo , Gencitabina , Imunidade , Células Dendríticas , Linhagem Celular Tumoral , Microambiente Tumoral , Proteína 10 de Linfoma CCL de Células B , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Neoplasias PancreáticasRESUMO
Although the introduction of HAART has completely changed the natural course of HIV infection, the number of chronic forms of HIV-associated neurocognitive disorder (HAND) has risen. It is estimated that up to half of subjects undergoing HAART therapy exhibit mild cognitive impairments. In the current study, we apply the gene co-expression network modular analysis, a well-established system biology approach, to the gene expression profiles of cases from the National NeuroAIDS Tissue Consortium (NNTC). We observed a negative enrichment for genes associated with the control of immune responses and putatively regulated by the transcription factors IRF8 and SPI1 and by both type I and II interferons. Our study provides evidence of altered immune responses, which are likely associated with the occurrence of HAND in the absence of HIV encephalitis (HIVE).
RESUMO
BACKGROUND: Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease which affects more than 50 million patients and represents 60-80% of all cases of dementia. Mutations in the APP gene, mostly affecting the γ-secretase site of cleavage and presenilin mutations, have been identified in inherited forms of AD. METHODS: In the present study, we performed a meta-analysis of the transcriptional signatures that characterize two familial AD mutations (APPV7171F and PSEN1M146V) in order to characterize the common altered biomolecular pathways affected by these mutations. Next, an anti-signature perturbation analysis was performed using the AD meta-signature and the drug meta-signatures obtained from the L1000 database, using cosine similarity as distance metrics. RESULTS: Overall, the meta-analysis identified 1479 differentially expressed genes (DEGs), 684 downregulated genes, and 795 upregulated genes. Additionally, we found 14 drugs with a significant anti-similarity to the AD signature, with the top five drugs being naftifine, moricizine, ketoconazole, perindopril, and fexofenadine. CONCLUSIONS: This study aimed to integrate the transcriptional profiles associated with common familial AD mutations in neurons in order to characterize the pathogenetic mechanisms involved in AD and to find more effective drugs for AD.
RESUMO
Alzheimer's disease (AD) is the most common cause of dementia worldwide and is characterized by a progressive decline in cognitive functions. Accumulation of amyloid-ß plaques and neurofibrillary tangles are a typical feature of AD neuropathological changes. The entorhinal cortex (EC) is the first brain area associated with pathologic changes in AD, even preceding atrophy of the hippocampus. In the current study, we have performed a meta-analysis of publicly available expression data sets of the entorhinal cortex (EC) in order to identify potential pathways underlying AD pathology. The meta-analysis identified 1915 differentially expressed genes (DEGs) between the EC from normal and AD patients. Among the downregulated DEGs, we found a significant enrichment of biological processes pertaining to the "neuronal system" (R-HSA-112316) and the "synaptic signaling" (GO:0099536), while the "regulation of protein catabolic process" (GO:00042176) and "transport of small molecules" (R-HSA-382551) resulted in enrichment among both the upregulated and downregulated DEGs. Finally, by means of an in silico pharmacology approach, we have prioritized drugs and molecules potentially able to revert the transcriptional changes associated with AD pathology. The drugs with a mostly anti-correlated signature were: efavirenz, an anti-retroviral drug; tacrolimus, a calcineurin inhibitor; and sirolimus, an mTOR inhibitor. Among the predicted drugs, those potentially able to cross the blood-brain barrier have also been identified. Overall, our study found a disease-specific set of dysfunctional biological pathways characterizing the EC in AD patients and identified a set of drugs that could in the future be exploited as potential therapeutic strategies. The approach used in the current study has some limitations, as it does not account for possible post-transcriptional events regulating the cellular phenotype, and also, much clinical information about the samples included in the meta-analysis was not available. However, despite these limitations, our study sets the basis for future investigations on the pathogenetic processes occurring in AD and proposes the repurposing of currently used drugs for the treatment of AD patients.
Assuntos
Doença de Alzheimer , Córtex Entorrinal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Atrofia/patologia , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Hipocampo/metabolismo , HumanosRESUMO
There is growing attention on natural substances capable of stimulating the cholinergic system and of exerting antioxidant effects, as potential therapeutic agents in Alzheimer's disease (AD). The aim of the present study is to evaluate the expected neuroprotective mechanisms of myrtenal (M) in an experimental model of dementia in rats. Dementia was induced in male Wistar rats by scopolamine (Sc) administration (0.1 mg/kg for 8 days and 20.0 mg/kg on day 9). The animals were divided into 5 groups (1) Controls; (2) Sc; (3) Sc + Myrtenal (40 mg/kg), (4) Sc + Galantamine (1 mg/kg); (5) Sc + Lipoic acid (30 mg/kg). Changes in recognition memory and habituation were evaluated via the Novel Object Recognition and Open Field tests. Acetylcholinesterase (AChE) activity, ACh levels, and changes in oxidative status of the brain were measured biochemically. The histological changes in two brain regions-cortex and hippocampus, were evaluated qualitatively and quantitatively. Myrtenal improved recognition memory and habituation, exerted antioxidant effects and significantly increased ACh brain levels. Histologically, the neuroprotective capacity of myrtenal was also confirmed. For the first time, we have demonstrated the neuroprotective potential of myrtenal in an experimental model of dementia. Our study provides proof-of-concept for the testing of myrtenal, in association with standard of care treatments, in patients affected by cognitive decline.