Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 244: 117834, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895604

RESUMO

Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr-1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr-1. Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m-2 (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m-2), CO2 (34.3 mW m-2), and NOx (17.5 mW m-2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m-2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.

2.
Geophys Res Lett ; 44(9): 4280-4286, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29225384

RESUMO

Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in-situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in-situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of SO2 across the tropical tropopause. These analyses show that the tropopause background SO2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget.

3.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29619117

RESUMO

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

4.
J Phys Chem A ; 119(19): 4439-49, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25405363

RESUMO

Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.


Assuntos
Poluentes Atmosféricos/análise , Clorofluorcarbonetos/análise , Mudança Climática , Monitoramento Ambiental
5.
Sci Total Environ ; 479-480: 151-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561294

RESUMO

The concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36 µg STP-m(-3) during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21 µg STP-m(-3) was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175 nm, and a small secondary lognormal mode with MMD of 470-500 nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880 nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Fuligem/análise , China
6.
J Geophys Res Atmos ; 119(4): 1915-1935, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28845379

RESUMO

Acquiring accurate measurements of water vapor at the low mixing ratios (< 10 ppm) encountered in the upper troposphere and lower stratosphere (UT/LS) has proven to be a significant analytical challenge evidenced by persistent disagreements between high-precision hygrometers. These disagreements have caused uncertainties in the description of the physical processes controlling dehydration of air in the tropical tropopause layer and entry of water into the stratosphere and have hindered validation of satellite water vapor retrievals. A 2011 airborne intercomparison of a large group of in situ hygrometers onboard the NASA WB-57F high-altitude research aircraft and balloons has provided an excellent opportunity to evaluate progress in the scientific community toward improved measurement agreement. In this work we intercompare the measurements from the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) and discuss the quality of agreement. Differences between values reported by the instruments were reduced in comparison to some prior campaigns but were nonnegligible and on the order of 20% (0.8 ppm). Our analysis suggests that unrecognized errors in the quantification of instrumental background for some or all of the hygrometers are a likely cause. Until these errors are understood, differences at this level will continue to somewhat limit our understanding of cirrus microphysical processes and dehydration in the tropical tropopause layer.

7.
Rev Sci Instrum ; 84(11): 116103, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289444

RESUMO

A compact, light-weight, two-dimension translatable slit aperture is described. The slit dimensions are scalable, allowing for wide application. With all metal construction, the device would be suitable for high temperature degassing and vacuum compatible. Alternatively, the main structure may be printed using a 3D printer for rapid prototyping and/or lighter weight. The precision of the slit movement is 0.014 mm.

8.
Sci Rep ; 3: 1356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23449011

RESUMO

The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.


Assuntos
Aerossóis/análise , Carbono/análise , Neve/química , Fuligem/análise , Atmosfera/química , Clima , Monitoramento Ambiental , Aquecimento Global , Tamanho da Partícula
9.
Geophys Res Lett ; 40(20): 5542-5547, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26311916

RESUMO

[1] Black carbon (BC) aerosol loadings were measured during the High-performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole Observations (HIPPO) campaign above the remote Pacific from 85°N to 67°S. Over 700 vertical profiles extending from near the surface to max ∼14 km altitude were obtained with a single-particle soot photometer between early 2009 and mid-2011. The data provides a climatology of BC in the remote regions that reveals gradients of BC concentration reflecting global-scale transport and removal of pollution. BC is identified as a sensitive tracer of extratropical mixing into the lower tropical tropopause layer and trends toward surprisingly uniform loadings in the lower stratosphere of ∼1 ng/kg. The climatology is compared to predictions from the AeroCom global model intercomparison initiative. The AeroCom model suite overestimates loads in the upper troposphere/lower stratosphere (∼10×) more severely than at lower altitudes (∼3×), with bias roughly independent of season or geographic location; these results indicate that it overestimates BC lifetime.

10.
Science ; 331(6022): 1295-9, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21393539

RESUMO

A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons.

11.
Science ; 304(5668): 261-5, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15073371

RESUMO

We have developed a chemical ionization mass spectrometry technique for precise in situ measurements of hydrochloric acid (HCl) from a high-altitude aircraft. In measurements at subtropical latitudes, minimum HCl values found in the upper troposphere (UT) were often near or below the detection limit of the measurements (0.005 parts per billion by volume), indicating that background HCl values are much lower than a global mean estimate. However, significant abundances of HCl were observed in many UT air parcels, as a result of stratosphere-to-troposphere transport events. We developed a method for diagnosing the amount of stratospheric ozone in these UT parcels using the compact linear correlation of HCl with ozone found throughout the lower stratosphere (LS). Expanded use of this method will lead to improved quantification of cross-tropopause transport events and validation of global chemical transport models.

12.
Science ; 303(5657): 516-20, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14739457

RESUMO

In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

14.
Science ; 291(5506): 1026-31, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11161213

RESUMO

Large particles containing nitric acid (HNO3) were observed in the 1999/2000 Arctic winter stratosphere. These in situ observations were made over a large altitude range (16 to 21 kilometers) and horizontal extent (1800 kilometers) on several airborne sampling flights during a period of several weeks. With diameters of 10 to 20 micrometers, these sedimenting particles have significant potential to denitrify the lower stratosphere. A microphysical model of nitric acid trihydrate particles is able to simulate the growth and sedimentation of these large sizes in the lower stratosphere, but the nucleation process is not yet known. Accurate modeling of the formation of these large particles is essential for understanding Arctic denitrification and predicting future Arctic ozone abundances.

15.
Science ; 266(5184): 398-404, 1994 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17816682

RESUMO

Simultaneous in situ measurements of the concentrations of OH, HO(2), ClO, BrO, NO, and NO(2) demonstrate the predominance of odd-hydrogen and halogen free-radical catalysis in determining the rate of removal of ozone in the lower stratosphere during May 1993. A single catalytic cycle, in which the rate-limiting step is the reaction of HO(2) with ozone, accounted for nearly one-half of the total O(3) removal in this region of the atmosphere. Halogen-radical chemistry was responsible for approximately one-third of the photochemical removal of O(3); reactions involving BrO account for one-half of this loss. Catalytic destruction by NO(2), which for two decades was considered to be the predominant loss process, accounted for less than 20 percent of the O(3) removal. The measurements demonstrate quantitatively the coupling that exists between the radical families. The concentrations of HO(2) and ClO are inversely correlated with those of NO and NO(2). The direct determination of the relative importance of the catalytic loss processes, combined with a demonstration of the reactions linking the hydrogen, halogen, and nitrogen radical concentrations, shows that in the air sampled the rate of O(3) removal was inversely correlated with total NOx, loading.

16.
Science ; 261(5125): 1134-6, 1993 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17790345

RESUMO

In situ measurements of chlorine monoxide (ClO) at mid- and high northern latitudes are reported for the period October 1991 to February 1992. As early as mid-December and throughout the winter, significant enhancements of this ozone-destroying radical were observed within the polar vortex shortly after temperatures dropped below 195 k. Decreases in ClO observed in February were consistent with the rapid formation of chlorine nitrate (ClONO(2)) by recombination of ClO with nitrogen dioxide (NO(2)) released photochemically from nitric acid (HNO(3)). Outside the vortex, ClO abundances were higher than in previous years as a result of NOx suppression by heterogeneous reactions on sulfate aerosols enhanced by the eruption of Mount Pinatubo.

17.
Science ; 261(5125): 1143-6, 1993 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17790348

RESUMO

Stratospheric meteorological conditions during the Airborne Arctic Stratospheric Expedition II (AASE II) presented excellent observational opportunities from Bangor, Maine, because the polar vortex was located over southeastern Canada for significant periods during the 1991-1992 winter. Temperature analyses showed that nitric acid trihydrates (NAT temperatures below 195 k) should have formed over small regions in early December. The temperatures in the polar vortex warmed beyond NAT temperatures by late January (earlier than normal). Perturbed chemistry was found to be associated with these cold temperatures.

18.
Science ; 261(5125): 1146-9, 1993 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17790349

RESUMO

In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.

19.
Science ; 252(5010): 1260-6, 1991 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17842951

RESUMO

The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

20.
Rev Sci Instrum ; 49(4): 503, 1978 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18699134

RESUMO

A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.


Assuntos
Eletrodos , Íons Pesados , Aceleradores de Partículas/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA