Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 306: 122471, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377846

RESUMO

Allogeneic stem-cell based regenerative medicine is a promising approach for bone defect repair. The use of chondrogenically differentiated human marrow stromal cells (MSCs) has been shown to lead to bone formation by endochondral ossification in immunodeficient pre-clinical models. However, an insight into the interactions between the allogeneic immune system and the human MSC-derived bone grafts has not been fully achieved yet. The choice of a potent source of MSCs isolated from pediatric donors with consistent differentiation and high proliferation abilities, as well as low immunogenicity, could increase the chance of success for bone allografts. In this study, we employed an immunodeficient animal model humanised with allogeneic immune cells to study the immune responses towards chondrogenically differentiated human pediatric MSCs (ch-pMSCs). We show that ch-differentiated pMSCs remained non-immunogenic to allogeneic CD4 and CD8 T cells in an in vitro co-culture model. After subcutaneous implantation in mice, ch-pMSC-derived grafts were able to initiate bone mineralisation in the presence of an allogeneic immune system for 3 weeks without the onset of immune responses. Re-exposing the splenocytes of the humanised animals to pMSCs did not trigger further T cell proliferation, suggesting an absence of secondary immune responses. Moreover, ch-pMSCs generated mature bone after 8 weeks of implantation that persisted for up to 6 more weeks in the presence of an allogeneic immune system. These data collectively show that human allogeneic chondrogenically differentiated pediatric MSCs might be a safe and potent option for bone defect repair in the tissue engineering and regenerative medicine setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Criança , Osteogênese , Medula Óssea , Células Estromais , Diferenciação Celular , Células da Medula Óssea , Células Cultivadas
2.
Bioact Mater ; 29: 241-250, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37502679

RESUMO

Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9's mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential.

3.
J Funct Biomater ; 14(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36826910

RESUMO

Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects.

4.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409290

RESUMO

For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2's bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.


Assuntos
Proteína Morfogenética Óssea 2 , Substitutos Ósseos , Aminoácidos , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Colágeno , Humanos , Microesferas , Osteogênese/genética , Alicerces Teciduais/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-30881954

RESUMO

The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.

7.
Adv Healthc Mater ; 7(21): e1800507, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230271

RESUMO

New solutions for large bone defect repair are needed. Here, in situ gelling slow release systems for bone induction are assessed. Collagen-I based Recombinant Peptide (RCP) microspheres (MSs) are produced and used as a carrier for bone morphogenetic protein 2 (BMP-2). The RCP-MSs are dispersed in three hydrogels: high mannuronate (SLM) alginate, high guluronate (SLG) alginate, and thermoresponsive hyaluronan derivative (HApN). HApN+RCP-MS forms a gel structure at 32 ºC or above, while SLM+RCP-MS and SLG+RCP-MS respond to shear stress displaying thixotropic behavior. Alginate formulations show sustained release of BMP-2, while there is minimal release from HApN. These formulations are injected subcutaneously in rats. SLM+RCP-MS and SLG+RCP-MS loaded with BMP-2 induce ectopic bone formation as revealed by X-ray tomography and histology, whereas HApN+RCP-MS do not. Vascularization occurs within all the formulations studied and is significantly higher in SLG+MS and HApN+RCP-MS than in SLM+RCP-MS. Inflammation (based on macrophage subset staining) decreases over time in both alginate groups, but increases in the HApN+RCP-MS condition. It is shown that a balance between inflammatory cell infiltration, BMP-2 release, and vascularization, achieved in the SLG+RCP-MS alginate condition, is optimal for the induction of de novo bone formation.


Assuntos
Colágeno/química , Hidrogéis/química , Microesferas , Alginatos/química , Animais , Regeneração Óssea/fisiologia , Ácido Hialurônico/química , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tomografia por Raios X
8.
Tissue Eng Part A ; 24(3-4): 207-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463604

RESUMO

Currently, autografts still represent the gold standard treatment for the repair of large bone defects. However, these are associated with donor-site morbidity and increased pain, cost, and recovery time. The ideal therapy would use biomaterials combined with bone growth factors to induce and instruct bone defect repair without the need to harvest patient tissue. In this line, bone morphogenetic proteins (BMPs) have been the most extensively used agents for clinical bone repair, but at supraphysiological doses that are not without risk. Because of the need to eliminate the risks of BMP2 use in vivo, we assessed the ability of three putative osteogenic factors, nel-like molecule type 1 (NELL-1), high mobility group box 1 (HMGB1), and CCN2, to enhance the essential processes for bone defect repair in vitro and compared them to BMP2. Although it has been reported that NELL-1, HMGB1, and CCN2 play a role in bone formation, less is known about the contribution of these proteins to the different events involved, such as cell migration, osteogenesis, and vasculogenesis. In this study, we investigated the effects of different doses of NELL-1, HMGB, CCN2, and BMP2 on these three processes as a model for the recruitment and differentiation of resident cells in the in vivo bone defect repair situation, using cells of human origin. Our data demonstrated that NELL-1, HMGB1, and CCN2 significantly induced mesenchymal stem cell migration (from 1.58-fold increase compared to control), but BMP2 did not. Interestingly, only BMP2 increased osteogenesis in marrow stromal cells, whereas it inhibited osteogenesis in preosteoblasts. Moreover, the four proteins studied promoted significantly endothelial cell migration, reaching a maximum of 2.4-fold increase compared to control, and induced formation of tube-like structures. NELL-1, HMGB1, and CCN2 had these effects at relatively low doses compared to BMP2. This work indicates that NELL-1, HMGB1, and CCN2 might enhance bone defect healing via the recruitment of endogenous cells and induction of vascularization and act via different processes than BMP2.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína HMGB1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteogênese/fisiologia , Proteína Morfogenética Óssea 2/genética , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Criança , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Proteína HMGB1/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Proteínas do Tecido Nervoso/genética , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA