Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e24563, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317922

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 µg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 µg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.

2.
Heliyon ; 10(1): e23612, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38283239

RESUMO

Herein, we isolated three triterpenoid saponins from the methanol extract of the fruit pulp of argan. The structures of the identified compounds were determined using comprehensive NMR spectroscopy analyses (1H, 13C NMR, COSY, TOCSY, ROESY, and HSQC), combined with mass spectroscopy. Gas chromatography (GC) was utilized to determine the monosaccharide contents after the samples underwent methanolysis and their glycoside configuration was proved via their trimethylsilyl derivatives. Furthermore, the methanol extract of the fruit pulp and its n-butanol fraction were evaluated for their antioxidant properties via DPPH, ABTS, and FRAP assays, antidiabetic activity using α-amylase and α-glucosidase inhibition activities, and antibacterial properties utilizing microdilution and antibiofilm assays. Compared to the crude methanol extract, our results showed that the n-butanol fraction exhibited more potent antioxidant activity and antibacterial potential against Staphylococcus aureus, Escherichia coli, Salmonella typhi, Enterococcus faecalis, and Pseudomonas aeruginosa (MIC = 12.5-50 mg/mL); while no effect on the bacterial biofilm was observed. The methanol extract was more effective in inhibiting α-glucosidase (EC50 = 0.15 mg/mL), however, the n-butanol fraction elicited strong α-amylase inhibition (EC50 = 0.49 mg/mL). These findings suggest that the fruit pulp of argan could serve as a potential source of phytochemicals suitable for the treatment of diabetes and its related complications.

3.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375191

RESUMO

Zaitra, Thymus satureioides, is an aromatic plant with a long history of use in traditional medicine. In this study, we assessed the mineral composition, nutritional value, phytocontents, and dermatological properties of the aerial parts of T. satureioides. The plant contained high contents of calcium and iron, moderate levels of magnesium, manganese, and zinc, and low contents of total nitrogen, total phosphorus, total potassium, and copper. It is rich in several amino acids, including asparagine, 4-hydroxyproline, isoleucine, and leucine, and the essential amino acids account for 60.8%. The extract contains considerable amounts of polyphenols and flavonoids (TPC = 118.17 mg GAE/g extract and TFC = 32.32 mg quercetin/g extract). It also comprises 46 secondary metabolites, identified through LC-MS/MS analysis, belonging to phenolic acids, chalcones, and flavonoids. The extract elicited pronounced antioxidant activities, inhibited the growth of P. aeruginosa (MIC = 50 mg/mL), and reduced biofilm formation by up to 35.13% using the » sub-MIC of 12.5 mg/mL. Moreover, bacterial extracellular proteins and exopolysaccharides were diminished by 46.15% and 69.04%, respectively. Likewise, the swimming of the bacterium was impaired (56.94% decrease) in the presence of the extract. In silico, skin permeability and sensitization effects revealed that out of the 46 identified compounds, 33 were predicted to be exempt from any skin sensitivity risk (Human Sensitizer Score ≤ 0.5), while extensive skin permeabilities were observed (Log Kp = -3.35--11.98 cm/s). This study provides scientific evidence about the pronounced activities of T. satureioides, supports its traditional uses, and promotes its utilization in the development of new drugs, food supplements, and dermatological agents.


Assuntos
Extratos Vegetais , Espectrometria de Massas em Tandem , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cromatografia Líquida , Flavonoides/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Antioxidantes/química , Minerais/análise , Proteínas de Bactérias , Valor Nutritivo
4.
Front Microbiol ; 13: 999988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204627

RESUMO

Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.

5.
Microorganisms ; 10(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144437

RESUMO

Plant Growth-Promoting Rhizobacteria (PGPR) have attracted much attention in agriculture biotechnology as biological inputs to sustain crop production. The present study describes a halotolerant phosphate solubilizing bacterium associated with quinoa plant roots. Based on a metabolic screening, one bacterial isolate, named QA2, was selected and screened for PGPR traits. This isolate solubilized both inorganic phosphate and zinc, produced indole-3-acetic acid, ammonia, hydrogen cyanide, cellulase, and (to be deleted) protease, and induced biofilm formation. We demonstrated that QA2 exhibited both antimicrobial and ion metabolism activities and tolerated high salt concentration at up to 11% NaCl. Genotyping analyses, using 16S rRNA and chaperonin cpn60 genes, revealed that QA2 belongs to the species of Bacillus velezensis. Using the quinoa model cultivated under a saline condition, we demonstrated that QA2 promoted plant growth and mitigated the saline irrigation effects. Analysis of harvested plants revealed that QA2 induced a significant increase of both leaf chlorophyll index by 120.86% (p < 0.05) and P uptake by 41.17% (p < 0.05), while the content of Na+ was drastically decreased. Lastly, a bibliometric data analysis highlighted the panoramic view of studies carried out so far on B. velezensis strains. Our investigation presents a holistic view of the potential application of B. velezensis as a biological inoculant to promote plant growth, control pathogen attacks, and mitigate the salinity effect of quinoa plants. Further investigations are still needed to demonstrate these effects in field conditions.

6.
PeerJ ; 9: e11583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249493

RESUMO

Jujube plant (Ziziphus lotus (L.) Desf.) can survive in arid climates and tolerates both biotic and abiotic stresses. Here, we isolated, for the first time in Morocco, nine phosphate solubilizing bacteria strains from jujube rhizosphere, designated J10 to J13, J15, & J153 to J156. Genotypic identification based on 16S rDNA sequencing, revealed six strains that belong to Pseudomonas (J10, J12, J13, J15, J153 and J154), two to Bacillus (J11 and J156), and one to Paenibacillus J155. Siderophores were produced by all strains. Proteases activity was missing in Pseudomonas sp. J153 & J154, whereas cellulase was restricted only to Pseudomonas sp. J10, Paenibacillus xylanexedens J155 and Bacillus cereus J156. Indole-3- acetic acid and ammonia were also produced by all strains, with a maxima of 204.28 µg mL-1 in Bacillus megaterium J11 and 0.33 µmol mL-1 in Pseudomonas sp. J153, respectively. Pseudomonas sp. J10 and B. cereus J156 grew on plates containing 1,500 µg mL-1 of nickel nitrate, while Pseudomonas sp. J153 withstood 1,500 µg mL-1 of either copper sulfate or cadmium sulfate. Phenotypic analysis of the potential of the isolates to promote early plant growth showed that wheat seeds inoculated with either P. moraviensis J12 or B. cereus J156 remarkably increased germination rate and seedlings growth. Lastly, antibiotic resistance profiling revealed that except for Pseudomonas sp. J11 and B. cereus J156, remaining strains displayed resistance at least to one of tested antibiotics. Collectively, Pseudomonas sp. J10, P. moraviensis J12, Pseudomonas sp. J153 and B. cereus J156, represent potential biofertilizers suitable for soils that are poor in P, and/or heavy metals contaminated.

7.
Microorganisms ; 8(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599701

RESUMO

Plant growth-promoting rhizobacteria represent a promising solution to enhancing agricultural productivity. Here, we screened phosphate solubilizing bacteria from the rhizospheric soil of Chenopodium quinoa Willd and assessed their plant-growth promoting rhizobacteria (PGPR) properties including production of indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN), ammonia and extracellular enzymes. We also investigated their tolerance to salt stress and their capacity to form biofilms. Two isolated strains, named QA1 and QF11, solubilized phosphate up to 346 mg/L, produced IAA up to 795.31 µg/mL, and tolerated up to 2 M NaCl in vitro. 16S rRNA and Cpn60 gene sequencing revealed that QA1 and QF11 belong to the genus Bacillus licheniformis and Enterobacter asburiae, respectively. In vivo, early plant growth potential showed that quinoa seeds inoculated either with QA1 or QF11 displayed higher germination rates and increased seedling growth. Under saline irrigation conditions, QA1 enhanced plant development/growth. Inoculation with QA1 increased leaf chlorophyll content index, enhanced P and K+ uptake and decreased plant Na+ uptake. Likewise, plants inoculated with QF11 strain accumulated more K+ and had reduced Na+ content. Collectively, our findings support the use of QA1 and QF11 as potential biofertilizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA