Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(47): 25776-25788, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972287

RESUMO

Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.


Assuntos
Nanoporos , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo
2.
Biochemistry ; 62(16): 2407-2416, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37477459

RESUMO

In recent years, major advances in cryo-electron microscopy (cryo-EM) have enabled the routine determination of complex biomolecular structures at atomistic resolution. An open challenge for this approach, however, concerns large systems that exhibit continuous dynamics. To address this problem, we developed the metadynamic electron microscopy metainference (MEMMI) method, which incorporates metadynamics, an enhanced conformational sampling approach, into the metainference method of integrative structural biology. MEMMI enables the simultaneous determination of the structure and dynamics of large heterogeneous systems by combining cryo-EM density maps with prior information through molecular dynamics, while at the same time modeling the different sources of error. To illustrate the method, we apply it to elucidate the dynamics of an amyloid fibril of the islet amyloid polypeptide (IAPP). The resulting conformational ensemble provides an accurate description of the structural variability of the disordered region of the amyloid fibril, known as fuzzy coat. The conformational ensemble also reveals that in nearly half of the structural core of this amyloid fibril, the side chains exhibit liquid-like dynamics despite the presence of the highly ordered network backbone of hydrogen bonds characteristic of the cross-ß structure of amyloid fibrils.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Microscopia Crioeletrônica , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Simulação de Dinâmica Molecular , Microscopia Eletrônica
3.
Mol Pharm ; 20(1): 183-193, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374974

RESUMO

The presence of amyloid fibrils of α-synuclein is closely associated with Parkinson's disease and related synucleinopathies. It is still very challenging, however, to systematically discover small molecules that prevent the formation of these aberrant aggregates. Here, we describe a structure-based approach to identify small molecules that specifically inhibit the surface-catalyzed secondary nucleation step in the aggregation of α-synuclein by binding to the surface of the amyloid fibrils. The resulting small molecules are screened using a range of kinetic and thermodynamic assays for their ability to bind α-synuclein fibrils and prevent the further generation of α-synuclein oligomers. This study demonstrates that the combination of structure-based and kinetic-based drug discovery methods can lead to the identification of small molecules that selectively inhibit the autocatalytic proliferation of α-synuclein aggregates.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Doença de Parkinson/metabolismo , Cinética , Proliferação de Células , Agregados Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA