Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0075424, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078165

RESUMO

Supraglacial pools are prevalent on debris-covered mountain glaciers, yet only limited information is available on the microbial communities within these habitats. Our research questions for this preliminary study were: (1) What microbes occur in supraglacial pool sediments of monsoonal Tibet?; (2) Which abiotic and biotic habitat variables have the most influence on the microbial community structure?; and (3) Does microbial composition of supraglacial pool sediments differ from that of glacial-melt stream pool sediments? We collected microbial samples for 16S rRNA sequencing and invertebrates for enumeration and identification and measured 14 abiotic variables from 46 supraglacial pools and nine glacial-melt stream pools in 2018 and 2019. Generalized linear model analyses, small sample Akaike information criterion, and variable importance scores were used to identify the best predictor variables of microbial community structure. Multi-response permutation procedure (MRPP) was used to compare taxa composition between supraglacial pools and stream pools. The most abundant phyla in supraglacial pool sediments were Proteobacteria, Actinobacteria, Bacteroidota, Chloroflexi, and Cyanobacteria. Genera richness, indicator genera richness, and Polaromonas relative abundance were best predicted by Chironomidae larvae abundance. Angustibacter and Oryzihumus relative abundance were best predicted by pH, Acidiphilium relative abundance was best predicted by turbidity, and Sphingomonas relative abundance was best predicted by glacier zone. Taxa composition was similar between supraglacial and stream pools at the class, genus, and ASV taxonomic levels. Our results indicate that Chironomidae larvae may play a keystone species role in shaping bacterial communities of supraglacial pools on debris-covered glaciers.IMPORTANCEGlacier meltwater habitats (cryoconite holes, supraglacial pools, supraglacial ponds and lakes, glacial streams) and their biota have not been well-studied, especially on debris-covered glaciers in temperate monsoonal regions. Our study is the first to document the microbial community-habitat relationships in supraglacial pools on a debris-covered glacier in Tibet. Microbial genera richness, indicator genera richness, and Polaromonas relative abundance declined with increasing larval Chironomidae abundance, which is a novel finding that highlights the importance of larval insects in structuring microbial communities in supraglacial pools.

2.
Microbiol Res ; 273: 127409, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186995

RESUMO

Debris-covered glaciers (DCGs) are globally distributed and thought to contain greater microbial diversity than clean surface continental glaciers, but the ecological characteristics of microbial communities on the surface of DCGs have remained underexplored. Here, we investigated bacterial and fungal diversity and co-occurrence networks on the supraglacial debris habitat of two DCGs (Hailuogou and Dagongba Glaciers) in the southeastern Tibetan Plateau. We found that the supraglacial debris harbored abundant microbes with Proteobacteria occupying more than half (51.5%) of the total bacteria operational taxonomic units. The composition, diversity, and co-occurrence networks of both bacterial and fungal communities in the debris were significantly different between Hailuogou Glacier and Dagongba Glacier even though the glaciers are geographically adjacent within the same mountain range. Bacteria were more diverse in the debris of the Dagongba Glacier, where a lower surface velocity and thicker debris layer allowed the supraglacial debris to continuously weather and accumulate nutrients. Fungi were more diverse in the debris of the Hailuogou Glacier, which experiences a wetter monsoonal climate, is richer in calcium, has greater debris instability, and greater ice velocity than the Dagongba Glacier. These factors may provide ideal conditions for the dispersal and propagation of fungi spores on the Hailuogou Glacier. In addition, we found an obvious gradient of bacterial diversity along the supraglacial debris transect on the Hailuogou Glacier. Bacterial diversity was lower where debris cover was thin and scattered and became more diverse near the glacial terminus in thick, slow-moving debris. No such increasing bacterial pattern was detected on the Dagongba Glacier, which implies a positive relationship of debris age, thickness, and weathering on bacterial diversity. Additionally, a highly connected bacterial co-occurrence network with low modularity was found in the debris of the Hailuogou Glacier. In contrast, debris from the Dagongba Glacier exhibited less connected but more modularized co-occurrence networks of both bacterial and fungal communities. These findings indicate that less disturbed supraglacial debris conditions are crucial for microbes to form stable communities on DCGs.


Assuntos
Microbiota , Micobioma , Camada de Gelo/microbiologia , Tibet , Bactérias/genética
3.
Chemosphere ; 293: 133655, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35051519

RESUMO

Aquatic insects within glacial-melt streams are adapted to low dissolved inorganic ion concentrations. Increases in ion concentrations in glacial-melt streams are predicted with increasing air temperatures, which may impact future aquatic insect survival in these streams. We hypothesized that stonefly (Plecoptera) naiads from glacial-melt streams acclimated to different conductivity would differ in survival, median lethal concentrations, and chloride cell responses to elevated conductivity above that expected in our study streams. We conducted field bioassays in remote glacial-melt streams in southwestern China in 2015 and exposed representative stonefly naiads (Chloroperlidae, Nemouridae, Taeniopterygidae) from stream sites differing in conductivity to experimental conductivity ranging from 11 to 20,486 µS/cm for up to 216 h. We examined survivorship, calculated 96-h median lethal concentrations, and measured chloride cell responses with scanning electron microscopy. Chloroperlidae survival after 120 and 216 h did not differ (P > 0.05) among conductivity treatments. The combined Nemouridae/Taeniopterygidae survival after 120 and 216 h was the least (P < 0.05) in conductivity treatments >16,349 µS/cm. Taeniopterygidae survival after 120 h was also the least (P < 0.05) in conductivity treatments >16,349 µS/cm. The 96-h median lethal concentrations did not differ (P > 0.05) between the combined Nemouridae/Taeniopterygidae group (2306 µS/cm) and Taeniopterigydae (2002 µS/cm) and were lower (P < 0.05) than the 96-h median lethal concentration for Chloroperlidae (8167 µS/cm). Chloroperlidae caviform cell number, density, and area decreased (P < 0.05) with increasing conductivity. Taeniopterygidae caviform cell count decreased (P < 0.05) with increasing conductivity, but cell density and area did not. Chloroperlidae and Taeniopterygidae coniform cell characteristics and Nemouridae bulbiform cell characteristics were not affected by conductivity. Our results suggest that Chloroperlidae, Nemouridae, and Taeniopterygidae from glacial-melt streams in China may be able to tolerate moderate increases in conductivity (i.e., 100 to 200 µS/cm).


Assuntos
Insetos , Rios , Animais , Cloretos , Salinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA