Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083521

RESUMO

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. Funding: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).


Assuntos
COVID-19 , Doenças Transmissíveis , Epidemias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Previsões , Modelos Estatísticos , Estudos Retrospectivos
2.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098064

RESUMO

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incerteza , Surtos de Doenças/prevenção & controle , Saúde Pública , Pandemias/prevenção & controle
3.
Commun Med (Lond) ; 2(1): 136, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36352249

RESUMO

BACKGROUND: During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. METHODS: We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study. RESULTS: We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict. CONCLUSIONS: Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.


We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future.

4.
Epidemics ; 41: 100632, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36182803

RESUMO

INTRODUCTION: School-age children play a key role in the spread of airborne viruses like influenza due to the prolonged and close contacts they have in school settings. As a result, school closures and other non-pharmaceutical interventions were recommended as the first line of defense in response to the novel coronavirus pandemic (COVID-19). METHODS: We used an agent-based model that simulates communities across the United States including daycares, primary, and secondary schools to quantify the relative health outcomes of reopening schools for the period of August 15, 2020 to April 11, 2021. Our simulation was carried out in early September 2020 and was based on the latest (at the time) Centers for Disease Control and Prevention (CDC)'s Pandemic Planning Scenarios released in May 2020. We explored different reopening scenarios including virtual learning, in-person school, and several hybrid options that stratify the student population into cohorts in order to reduce exposure and pathogen spread. RESULTS: Scenarios where cohorts of students return to school in non-overlapping formats, which we refer to as hybrid scenarios, resulted in significant decreases in the percentage of symptomatic individuals with COVID-19, by as much as 75%. These hybrid scenarios have only slightly more negative health impacts of COVID-19 compared to implementing a 100% virtual learning scenario. Hybrid scenarios can significantly avert the number of COVID-19 cases at the national scale-approximately between 28 M and 60 M depending on the scenario-over the simulated eight-month period. We found the results of our simulations to be highly dependent on the number of workplaces assumed to be open for in-person business, as well as the initial level of COVID-19 incidence within the simulated community. CONCLUSION: In an evolving pandemic, while a large proportion of people remain susceptible, reducing the number of students attending school leads to better health outcomes; part-time in-classroom education substantially reduces health risks.


Assuntos
COVID-19 , Criança , Estados Unidos/epidemiologia , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , Pandemias/prevenção & controle , SARS-CoV-2 , Instituições Acadêmicas
5.
PLoS Negl Trop Dis ; 15(5): e0009392, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34019536

RESUMO

Dengue virus remains a significant public health challenge in Brazil, and seasonal preparation efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a framework for characterizing weekly dengue activity at the Brazilian mesoregion level from 2010-2016 as time series properties that are relevant to forecasting efforts, focusing on outbreak shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition, we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and census data streams and regression methods to identify a parsimonious set of covariates that explain each time series property. The models explained 54% of the variation in outbreak shape, 38% of seasonal onset, 34% of pairwise correlation in outbreak timing, and 11% of pairwise correlation in outbreak magnitude. Regions that have experienced longer periods of drought sensitivity, as captured by the "normalized burn ratio," experienced less intense outbreaks, while regions with regular fluctuations in relative humidity had less regular seasonal outbreaks. Both the pairwise correlations in outbreak timing and outbreak trend between mesoresgions were best predicted by distance. Our analysis also revealed the presence of distinct geographic clusters where dengue properties tend to be spatially correlated. Forecasting models aimed at predicting the dynamics of dengue activity need to identify the most salient variables capable of contributing to accurate predictions. Our findings show that successful models may need to leverage distinct variables in different locations and be catered to a specific task, such as predicting outbreak magnitude or timing characteristics, to be useful. This advocates in favor of "adaptive models" rather than "one-size-fits-all" models. The results of this study can be applied to improving spatial hierarchical or target-focused forecasting models of dengue activity across Brazil.


Assuntos
Dengue/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Previsões/métodos , Brasil/epidemiologia , Humanos , Modelos Estatísticos , Estações do Ano , Tempo (Meteorologia)
6.
J Med Internet Res ; 23(5): e27059, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33882015

RESUMO

BACKGROUND: Health authorities can minimize the impact of an emergent infectious disease outbreak through effective and timely risk communication, which can build trust and adherence to subsequent behavioral messaging. Monitoring the psychological impacts of an outbreak, as well as public adherence to such messaging, is also important for minimizing long-term effects of an outbreak. OBJECTIVE: We used social media data from Twitter to identify human behaviors relevant to COVID-19 transmission, as well as the perceived impacts of COVID-19 on individuals, as a first step toward real-time monitoring of public perceptions to inform public health communications. METHODS: We developed a coding schema for 6 categories and 11 subcategories, which included both a wide number of behaviors as well codes focused on the impacts of the pandemic (eg, economic and mental health impacts). We used this to develop training data and develop supervised learning classifiers for classes with sufficient labels. Classifiers that performed adequately were applied to our remaining corpus, and temporal and geospatial trends were assessed. We compared the classified patterns to ground truth mobility data and actual COVID-19 confirmed cases to assess the signal achieved here. RESULTS: We applied our labeling schema to approximately 7200 tweets. The worst-performing classifiers had F1 scores of only 0.18 to 0.28 when trying to identify tweets about monitoring symptoms and testing. Classifiers about social distancing, however, were much stronger, with F1 scores of 0.64 to 0.66. We applied the social distancing classifiers to over 228 million tweets. We showed temporal patterns consistent with real-world events, and we showed correlations of up to -0.5 between social distancing signals on Twitter and ground truth mobility throughout the United States. CONCLUSIONS: Behaviors discussed on Twitter are exceptionally varied. Twitter can provide useful information for parameterizing models that incorporate human behavior, as well as for informing public health communication strategies by describing awareness of and compliance with suggested behaviors.


Assuntos
COVID-19 , Mineração de Dados , Comportamentos Relacionados com a Saúde , Comunicação em Saúde , Mídias Sociais , COVID-19/epidemiologia , Educação em Saúde , Humanos , Saúde Mental , Pandemias , Estados Unidos
7.
JMIR Public Health Surveill ; 7(4): e26527, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33764882

RESUMO

BACKGROUND: The COVID-19 outbreak has left many people isolated within their homes; these people are turning to social media for news and social connection, which leaves them vulnerable to believing and sharing misinformation. Health-related misinformation threatens adherence to public health messaging, and monitoring its spread on social media is critical to understanding the evolution of ideas that have potentially negative public health impacts. OBJECTIVE: The aim of this study is to use Twitter data to explore methods to characterize and classify four COVID-19 conspiracy theories and to provide context for each of these conspiracy theories through the first 5 months of the pandemic. METHODS: We began with a corpus of COVID-19 tweets (approximately 120 million) spanning late January to early May 2020. We first filtered tweets using regular expressions (n=1.8 million) and used random forest classification models to identify tweets related to four conspiracy theories. Our classified data sets were then used in downstream sentiment analysis and dynamic topic modeling to characterize the linguistic features of COVID-19 conspiracy theories as they evolve over time. RESULTS: Analysis using model-labeled data was beneficial for increasing the proportion of data matching misinformation indicators. Random forest classifier metrics varied across the four conspiracy theories considered (F1 scores between 0.347 and 0.857); this performance increased as the given conspiracy theory was more narrowly defined. We showed that misinformation tweets demonstrate more negative sentiment when compared to nonmisinformation tweets and that theories evolve over time, incorporating details from unrelated conspiracy theories as well as real-world events. CONCLUSIONS: Although we focus here on health-related misinformation, this combination of approaches is not specific to public health and is valuable for characterizing misinformation in general, which is an important first step in creating targeted messaging to counteract its spread. Initial messaging should aim to preempt generalized misinformation before it becomes widespread, while later messaging will need to target evolving conspiracy theories and the new facets of each as they become incorporated.


Assuntos
COVID-19/epidemiologia , Comunicação , Disseminação de Informação/métodos , Mídias Sociais/estatística & dados numéricos , Humanos
8.
JMIR Public Health Surveill ; 7(1): e24132, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33316766

RESUMO

BACKGROUND: Currently, the identification of infectious disease re-emergence is performed without describing specific quantitative criteria that can be used to identify re-emergence events consistently. This practice may lead to ineffective mitigation. In addition, identification of factors contributing to local disease re-emergence and assessment of global disease re-emergence require access to data about disease incidence and a large number of factors at the local level for the entire world. This paper presents Re-emerging Disease Alert (RED Alert), a web-based tool designed to help public health officials detect and understand infectious disease re-emergence. OBJECTIVE: Our objective is to bring together a variety of disease-related data and analytics needed to help public health analysts answer the following 3 primary questions for detecting and understanding disease re-emergence: Is there a potential disease re-emergence at the local (country) level? What are the potential contributing factors for this re-emergence? Is there a potential for global re-emergence? METHODS: We collected and cleaned disease-related data (eg, case counts, vaccination rates, and indicators related to disease transmission) from several data sources including the World Health Organization (WHO), Pan American Health Organization (PAHO), World Bank, and Gideon. We combined these data with machine learning and visual analytics into a tool called RED Alert to detect re-emergence for the following 4 diseases: measles, cholera, dengue, and yellow fever. We evaluated the performance of the machine learning models for re-emergence detection and reviewed the output of the tool through a number of case studies. RESULTS: Our supervised learning models were able to identify 82%-90% of the local re-emergence events, although with 18%-31% (except 46% for dengue) false positives. This is consistent with our goal of identifying all possible re-emergences while allowing some false positives. The review of the web-based tool through case studies showed that local re-emergence detection was possible and that the tool provided actionable information about potential factors contributing to the local disease re-emergence and trends in global disease re-emergence. CONCLUSIONS: To the best of our knowledge, this is the first tool that focuses specifically on disease re-emergence and addresses the important challenges mentioned above.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Internet , Vigilância em Saúde Pública/métodos , Humanos , Reprodutibilidade dos Testes
9.
medRxiv ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33173914

RESUMO

Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.

10.
J Med Internet Res ; 22(7): e14337, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32437327

RESUMO

BACKGROUND: Influenza epidemics result in a public health and economic burden worldwide. Traditional surveillance techniques, which rely on doctor visits, provide data with a delay of 1 to 2 weeks. A means of obtaining real-time data and forecasting future outbreaks is desirable to provide more timely responses to influenza epidemics. OBJECTIVE: This study aimed to present the first implementation of a novel dataset by demonstrating its ability to supplement traditional disease surveillance at multiple spatial resolutions. METHODS: We used internet traffic data from the Centers for Disease Control and Prevention (CDC) website to determine the potential usability of this data source. We tested the traffic generated by 10 influenza-related pages in 8 states and 9 census divisions within the United States and compared it against clinical surveillance data. RESULTS: Our results yielded an r2 value of 0.955 in the most successful case, promising results for some cases, and unsuccessful results for other cases. In the interest of scientific transparency to further the understanding of when internet data streams are an appropriate supplemental data source, we also included negative results (ie, unsuccessful models). Models that focused on a single influenza season were more successful than those that attempted to model multiple influenza seasons. Geographic resolution appeared to play a key role, with national and regional models being more successful, overall, than models at the state level. CONCLUSIONS: These results demonstrate that internet data may be able to complement traditional influenza surveillance in some cases but not in others. Specifically, our results show that the CDC website traffic may inform national- and division-level models but not models for each individual state. In addition, our results show better agreement when the data were broken up by seasons instead of aggregated over several years. We anticipate that this work will lead to more complex nowcasting and forecasting models using this data stream.


Assuntos
Centers for Disease Control and Prevention, U.S./normas , Influenza Humana/epidemiologia , Análise de Dados , Humanos , Incidência , Internet , Saúde Pública , Estados Unidos
11.
Health Secur ; 17(4): 255-267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31433278

RESUMO

Infectious disease reemergence is an important yet ambiguous concept that lacks a quantitative definition. Currently, reemergence is identified without specific criteria describing what constitutes a reemergent event. This practice affects reproducible assessments of high-consequence public health events and disease response prioritization. This in turn can lead to misallocation of resources. More important, early recognition of reemergence facilitates effective mitigation. We used a supervised machine learning approach to detect potential disease reemergence. We demonstrate the feasibility of applying a machine learning classifier to identify reemergence events in a systematic way for 4 different infectious diseases. The algorithm is applicable to temporal trends of disease incidence and includes disease-specific features to identify potential reemergence. Through this study, we offer a structured means of identifying potential reemergence using a data-driven approach.


Assuntos
Algoritmos , Doenças Transmissíveis Emergentes , Surtos de Doenças , Aprendizado de Máquina Supervisionado , Humanos , Informática Médica
12.
Vet Sci ; 6(2)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064099

RESUMO

Infectious diseases are changing due to the environment and altered interactions among hosts, reservoirs, vectors, and pathogens. This is particularly true for zoonotic diseases that infect humans, agricultural animals, and wildlife. Within the subset of zoonoses, vector-borne pathogens are changing more rapidly with climate change, and have a complex epidemiology, which may allow them to take advantage of a changing environment. Most mosquito-borne infectious diseases are transmitted by mosquitoes in three genera: Aedes, Anopheles, and Culex, and the expansion of these genera is well documented. There is an urgent need to study vector-borne diseases in response to climate change and to produce a generalizable approach capable of generating risk maps and forecasting outbreaks. Here, we provide a strategy for coupling climate and epidemiological models for zoonotic infectious diseases. We discuss the complexity and challenges of data and model fusion, baseline requirements for data, and animal and human population movement. Disease forecasting needs significant investment to build the infrastructure necessary to collect data about the environment, vectors, and hosts at all spatial and temporal resolutions. These investments can contribute to building a modeling community around the globe to support public health officials so as to reduce disease burden through forecasts with quantified uncertainty.

13.
JMIR Public Health Surveill ; 5(1): e12032, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30801254

RESUMO

BACKGROUND: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when incoming information is sparse and isolated, to identify effective control measures and guide their implementation. OBJECTIVE: This study aimed to develop a publicly accessible Web-based visual analytic called Analytics for the Investigation of Disease Outbreaks (AIDO) that uses historical disease outbreak information for decision support and situational awareness of an unfolding outbreak. METHODS: We developed an algorithm to allow the matching of unfolding outbreak data to a representative library of historical outbreaks. This process provides epidemiological clues that facilitate a user's understanding of an unfolding outbreak and facilitates informed decisions about mitigation actions. Disease-specific properties to build a complete picture of the unfolding event were identified through a data-driven approach. A method of analogs approach was used to develop a short-term forecasting feature in the analytic. The 4 major steps involved in developing this tool were (1) collection of historic outbreak data and preparation of the representative library, (2) development of AIDO algorithms, (3) development of user interface and associated visuals, and (4) verification and validation. RESULTS: The tool currently includes representative historical outbreaks for 39 infectious diseases with over 600 diverse outbreaks. We identified 27 different properties categorized into 3 broad domains (population, location, and disease) that were used to evaluate outbreaks across all diseases for their effect on case count and duration of an outbreak. Statistical analyses revealed disease-specific properties from this set that were included in the disease-specific similarity algorithm. Although there were some similarities across diseases, we found that statistically important properties tend to vary, even between similar diseases. This may be because of our emphasis on including diverse representative outbreak presentations in our libraries. AIDO algorithm evaluations (similarity algorithm and short-term forecasting) were conducted using 4 case studies and we have shown details for the Q fever outbreak in Bilbao, Spain (2014), using data from the early stages of the outbreak. Using data from only the initial 2 weeks, AIDO identified historical outbreaks that were very similar in terms of their epidemiological picture (case count, duration, source of exposure, and urban setting). The short-term forecasting algorithm accurately predicted case count and duration for the unfolding outbreak. CONCLUSIONS: AIDO is a decision support tool that facilitates increased situational awareness during an unfolding outbreak and enables informed decisions on mitigation strategies. AIDO analytics are available to epidemiologists across the globe with access to internet, at no cost. In this study, we presented a new approach to applying historical outbreak data to provide actionable information during the early stages of an unfolding infectious disease outbreak.

14.
Front Public Health ; 6: 336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533407

RESUMO

Accessible epidemiological data are of great value for emergency preparedness and response, understanding disease progression through a population, and building statistical and mechanistic disease models that enable forecasting. The status quo, however, renders acquiring and using such data difficult in practice. In many cases, a primary way of obtaining epidemiological data is through the internet, but the methods by which the data are presented to the public often differ drastically among institutions. As a result, there is a strong need for better data sharing practices. This paper identifies, in detail and with examples, the three key challenges one encounters when attempting to acquire and use epidemiological data: (1) interfaces, (2) data formatting, and (3) reporting. These challenges are used to provide suggestions and guidance for improvement as these systems evolve in the future. If these suggested data and interface recommendations were adhered to, epidemiological and public health analysis, modeling, and informatics work would be significantly streamlined, which can in turn yield better public health decision-making capabilities.

15.
CSCW Conf Comput Support Coop Work ; 2017: 1812-1834, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28782059

RESUMO

Effective disease monitoring provides a foundation for effective public health systems. This has historically been accomplished with patient contact and bureaucratic aggregation, which tends to be slow and expensive. Recent internet-based approaches promise to be real-time and cheap, with few parameters. However, the question of when and how these approaches work remains open. We addressed this question using Wikipedia access logs and category links. Our experiments, replicable and extensible using our open source code and data, test the effect of semantic article filtering, amount of training data, forecast horizon, and model staleness by comparing across 6 diseases and 4 countries using thousands of individual models. We found that our minimal-configuration, language-agnostic article selection process based on semantic relatedness is effective for improving predictions, and that our approach is relatively insensitive to the amount and age of training data. We also found, in contrast to prior work, very little forecasting value, and we argue that this is consistent with theoretical considerations about the nature of forecasting. These mixed results lead us to propose that the currently observational field of internet-based disease surveillance must pivot to include theoretical models of information flow as well as controlled experiments based on simulations of disease.

16.
BMC Infect Dis ; 17(1): 549, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784113

RESUMO

Biosurveillance, a relatively young field, has recently increased in importance because of increasing emphasis on global health. Databases and tools describing particular subsets of disease are becoming increasingly common in the field. Here, we present an infectious disease database that includes diseases of biosurveillance relevance and an extensible framework for the easy expansion of the database.


Assuntos
Biovigilância/métodos , Doenças Transmissíveis , Bases de Dados Factuais , Humanos
17.
PLoS One ; 11(1): e0146600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820405

RESUMO

Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.


Assuntos
Doenças Transmissíveis/epidemiologia , Monitoramento Epidemiológico , Animais , Controle de Doenças Transmissíveis , Humanos , Modelos Estatísticos
18.
J Infect Dis ; 214(suppl_4): S404-S408, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830111

RESUMO

Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.


Assuntos
Comportamento , Doenças Transmissíveis/epidemiologia , Epidemias , Previsões/métodos , Simulação por Computador , Humanos , Armazenamento e Recuperação da Informação , Internet , Modelos Teóricos
19.
PLoS Comput Biol ; 11(5): e1004239, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25974758

RESUMO

Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.


Assuntos
Previsões/métodos , Influenza Humana/epidemiologia , Internet , Centers for Disease Control and Prevention, U.S. , Biologia Computacional , Monitoramento Epidemiológico , História do Século XXI , Humanos , Modelos Estatísticos , Estações do Ano , Estados Unidos/epidemiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-26834939

RESUMO

INTRODUCTION: We document a funded effort to bridge the gap between constrained scientific challenges of public health surveillance and methodologies from academia and industry. Component tasks are the collection of epidemiologists' use case problems, multidisciplinary consultancies to refine them, and dissemination of problem requirements and shareable datasets. We describe an initial use case and consultancy as a concrete example and challenge to developers. MATERIALS AND METHODS: Supported by the Defense Threat Reduction Agency Biosurveillance Ecosystem project, the International Society for Disease Surveillance formed an advisory group to select tractable use case problems and convene inter-disciplinary consultancies to translate analytic needs into well-defined problems and to promote development of applicable solution methods. The initial consultancy's focus was a problem originated by the North Carolina Department of Health and its NC DETECT surveillance system: Derive a method for detection of patient record clusters worthy of follow-up based on free-text chief complaints and without syndromic classification. RESULTS: Direct communication between public health problem owners and analytic developers was informative to both groups and constructive for the solution development process. The consultancy achieved refinement of the asyndromic detection challenge and of solution requirements. Participants summarized and evaluated solution approaches and discussed dissemination and collaboration strategies. PRACTICE IMPLICATIONS: A solution meeting the specification of the use case described above could improve human monitoring efficiency with expedited warning of events requiring follow-up, including otherwise overlooked events with no syndromic indicators. This approach can remove obstacles to collaboration with efficient, minimal data-sharing and without costly overhead.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA