Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336585

RESUMO

Parasitic helminths and their isolated secreted products show promise as novel treatments for allergic and autoimmune conditions in humans. Foremost amongst the secreted products is ES-62, a glycoprotein derived from Acanthocheilonema viteae, a filarial nematode parasite of gerbils, which is anti-inflammatory by virtue of covalently-attached phosphorylcholine (PC) moieties. ES-62 has been found to protect against disease in mouse models of rheumatoid arthritis, systemic lupus erythematosus, and airway hyper-responsiveness. Furthermore, novel PC-based synthetic small molecule analogues (SMAs) of ES-62 have recently been demonstrated to show similar anti-inflammatory properties to the parent molecule. In spite of these successes, we now show that ES-62 and its SMAs are unable to provide protection in mouse models of certain autoimmune conditions where other helminth species or their secreted products can prevent disease development, namely type I diabetes, multiple sclerosis and inflammatory bowel disease. We speculate on the reasons underlying ES-62's failures in these conditions and how the negative data generated may help us to further understand ES-62's mechanism of action.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteínas de Helminto/administração & dosagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Acanthocheilonema/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Proteínas de Helminto/química , Helmintos/química , Humanos , Doenças Inflamatórias Intestinais/patologia , Camundongos , Esclerose Múltipla/patologia
2.
Acta Neuropathol Commun ; 4(1): 75, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27455844

RESUMO

Recent research findings have provided convincing evidence indicating a role for Interleukin-33 (IL-33) signalling pathway in a number of central nervous system (CNS) diseases including multiple sclerosis (MS) and Alzheimer's disease. However, the exact function of IL-33 molecule within the CNS under normal and pathological conditions is currently unknown. In this study, we have mapped cellular expression of IL-33 and its receptor ST2 by immunohistochemistry in the brain tissues of MS patients and appropriate controls; and investigated the functional significance of these findings in vitro using a myelinating culture system. Our results demonstrate that IL-33 is expressed by neurons, astrocytes and microglia as well as oligodendrocytes, while ST2 is expressed in the lesions by oligodendrocytes and within and around axons. Furthermore, the expression levels and patterns of IL-33 and ST2 in the lesions of acute and chronic MS patient brain samples are enhanced compared with the healthy brain tissues. Finally, our data using rat myelinating co-cultures suggest that IL-33 may play an important role in MS development by inhibiting CNS myelination.


Assuntos
Encéfalo/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Doença Aguda , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Doença Crônica , Técnicas de Cocultura , Feminino , Humanos , Interleucina-33/administração & dosagem , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/patologia , Ratos Sprague-Dawley , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Medula Espinal/patologia
3.
Parasitology ; 142(14): 1703-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490634

RESUMO

Mounting an antibody response capable of discriminating amongst and appropriately targeting different parasites is crucial in host defence. However, cross-reactive antibodies that recognize (bind to) multiple parasite species are well documented. We aimed to determine if a higher inoculating dose of one species, and thus exposure to larger amounts of antigen over a longer period of time, would fine-tune responses to that species and reduce cross-reactivity. Using the Plasmodium chabaudi chabaudi (Pcc)-Nippostrongylus brasiliensis (Nb) co-infection model in BALB/c mice, in which we previously documented cross-reactive antibodies, we manipulated the inoculating dose of Pcc across 4 orders of magnitude. We investigated antigen-specific and cross-reactive antibody responses against crude and defined recombinant antigens by enzyme linked immunosorbent assay, Western blot and antibody depletion assays. Contrary to our hypothesis that increasing exposure to Pcc would reduce cross-reactivity to Nb, we found evidence for increased avidity of a subpopulation of antibodies that recognized shared antigens. Western blot indicated proteins of apparent monomer molecular mass 28 and 98 kDa in both Nb and Pcc antigen preparations and also an Nb protein of similar size to recombinant Pcc antigen, merozoite surface protein-1(19). The implications of antibodies binding antigen from such phylogenetically distinct parasites are discussed.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Protozoários/imunologia , Nippostrongylus/imunologia , Plasmodium chabaudi/imunologia , Análise de Variância , Animais , Afinidade de Anticorpos , Coinfecção , Reações Cruzadas , Epitopos/imunologia , Feminino , Imunoglobulina G/imunologia , Malária/complicações , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Murinae , Organismos Livres de Patógenos Específicos , Baço/imunologia , Infecções por Strongylida/complicações , Infecções por Strongylida/imunologia
4.
Immunology ; 141(1): 9-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24116703

RESUMO

Interleukin-33 (IL-33) is a member of the IL-1 cytokine family. It predominantly induces type 2 immune responses and thus is protective against atherosclerosis and nematode infections but contributes to allergic airway inflammation. Interleukin-33 also plays a pivotal role in the development of many autoimmune diseases through mechanisms that are still not fully understood. In this review, we focus on the recent advances in understanding of the expression and function of IL-33 in some autoimmune disorders, aiming to provide insight into its potential role in disease development.


Assuntos
Doenças Autoimunes/imunologia , Regulação da Expressão Gênica/imunologia , Interleucinas/imunologia , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Doenças Autoimunes/patologia , Humanos , Interleucina-33
5.
Infect Genet Evol ; 20: 270-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056014

RESUMO

Within-host competition among parasite genotypes affects epidemiology as well as the evolution of virulence. In the rodent malaria Plasmodium chabaudi, competition among genotypes, as well as clone-specific and clone-transcending immunity are well documented. However, variation among genotypes in the induction of antibodies is not well understood, despite the important role of antibodies in the clearance of malaria infection. Here, we quantify the potential for antibodies induced by one clone to bind another (i.e., to cause antibody-mediated apparent competition) for nine genetically distinct P. chabaudi clones. We hypothesised that clones would vary in the strength of antibody induction, and that the propensity for clone-transcending immunity between a pair of clones would increase with increasing genetic relatedness at key antigenic loci. Using serum collected from mice 35 days post-infection, we measured titres of antibody to an unrelated antigen, Keyhole Limpet Haemocyanin (KLH), and two malaria antigens: recombinant Apical Membrane Antigen-1 (AMA-1) and Merozoite Surface Protein-119 (MSP-119). Amino acid sequence homology within each antigenic locus was used as a measure of relatedness. We found significant parasite genetic variation for the strength of antibody induction. We also found that relatedness at MSP-119 but not AMA-1 predicted clone-transcending binding. Our results help explain the outcome of chronic-phase mixed infections and generate testable predictions about the pairwise competitive ability of P. chabaudi clones.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Hemocianinas/imunologia , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium chabaudi/imunologia , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Feminino , Variação Genética , Genótipo , Malária/genética , Malária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium chabaudi/classificação , Plasmodium chabaudi/genética , Alinhamento de Sequência , Análise de Sequência de DNA
6.
BMC Immunol ; 11: 6, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20163714

RESUMO

BACKGROUND: Antibody isotype responses can be useful as indicators of immune bias during infection. In studies of parasite co-infection however, interpretation of immune bias is complicated by the occurrence of cross-reactive antibodies. To confidently attribute shifts in immune bias to the presence of a co-infecting parasite, we suggest practical approaches to account for antibody cross-reactivity. The potential for cross-reactive antibodies to influence disease outcome is also discussed. RESULTS: Utilising two murine models of malaria-helminth co-infection we analysed antibody responses of mice singly- or co-infected with Plasmodium chabaudi chabaudi and Nippostrongylus brasiliensis or Litomosoides sigmodontis. We observed cross-reactive antibody responses that recognised antigens from both pathogens irrespective of whether crude parasite antigen preparations or purified recombinant proteins were used in ELISA. These responses were not apparent in control mice. The relative strength of cross-reactive versus antigen-specific responses was determined by calculating antibody titre. In addition, we analysed antibody binding to periodate-treated antigens, to distinguish responses targeted to protein versus carbohydrate moieties. Periodate treatment affected both antigen-specific and cross-reactive responses. For example, malaria-induced cross-reactive IgG1 responses were found to target the carbohydrate component of the helminth antigen, as they were not detected following periodate treatment. Interestingly, periodate treatment of recombinant malaria antigen Merozoite Surface Protein-119 (MSP-119) resulted in increased detection of antigen-specific IgG2a responses in malaria-infected mice. This suggests that glycosylation may have been masking protein epitopes and that periodate-treated MSP-119 may more closely reflect the natural non-glycosylated antigen seen during infection. CONCLUSIONS: In order to utilize antibody isotypes as a measure of immune bias during co-infection studies, it is important to dissect antigen-specific from cross-reactive antibody responses. Calculating antibody titre, rather than using a single dilution of serum, as a measure of the relative strength of the response, largely accomplished this. Elimination of the carbohydrate moiety of an antigen that can often be the target of cross-reactive antibodies also proved useful.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Helmintos/imunologia , Reações Cruzadas , Filariose/imunologia , Malária/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Fragmentos de Peptídeos/imunologia , Infecções por Strongylida/imunologia , Animais , Carboidratos/imunologia , Carboidratos/isolamento & purificação , Feminino , Filariose/complicações , Filariose/diagnóstico , Filarioidea/imunologia , Filarioidea/patogenicidade , Glicosilação , Malária/complicações , Malária/diagnóstico , Camundongos , Camundongos Endogâmicos BALB C , Nippostrongylus/imunologia , Nippostrongylus/patogenicidade , Ácido Periódico/metabolismo , Plasmodium chabaudi/imunologia , Plasmodium chabaudi/patogenicidade , Infecções por Strongylida/complicações , Infecções por Strongylida/diagnóstico , Titulometria
7.
BMC Immunol ; 10: 60, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19951425

RESUMO

BACKGROUND: Larvae of several common species of parasitic nematodes obligately migrate through, and often damage, host lungs. The larvae induce strong pulmonary Type 2 immune responses, including T-helper (Th)2 cells as well as alternatively activated macrophages (AAMphi) and associated chitinase and Fizz/resistin family members (ChaFFs), which are thought to promote tissue repair processes. Given the prevalence of systemic or lung-resident Type 1-inducing pathogens in geographical areas in which nematodes are endemic, we wished to investigate the impact of concurrent Type 1 responses on the development of these Type 2 responses to nematode larval migration. We therefore infected BALB/c mice with the nematode Nippostrongylus brasiliensis, in the presence or absence of Plasmodium chabaudi chabaudi malaria parasites. Co-infected animals received both infections on the same day, and disease was assessed daily before immunological measurements were taken at 3, 5, 7 or 20 days post-infection. RESULTS: We observed that the nematodes themselves caused transient loss of body mass and red blood cell density, but co-infection then slightly ameliorated the severity of malarial anaemia. We also tracked the development of immune responses in the lung and thoracic lymph node. By the time of onset of the adaptive immune response around 7 days post-infection, malaria co-infection had reduced pulmonary expression of ChaFFs. Assessment of the T cell response demonstrated that the Th2 response to the nematode was also significantly impaired by malaria co-infection. CONCLUSION: P. c. chabaudi co-infection altered both local and lymph node Type 2 immune activation due to migration of N. brasiliensis larvae. Given recent work from other laboratories showing that N. brasiliensis-induced ChaFFs correlate to the extent of long-term lung damage, our results raise the possibility that co-infection with malaria might alter pulmonary repair processes following nematode migration. Further experimentation in the co-infection model developed here will reveal the longer-term consequences of the presence of both malaria and helminths in the lung.


Assuntos
Ativação Linfocitária/imunologia , Malária/imunologia , Nippostrongylus/imunologia , Plasmodium chabaudi/imunologia , Infecções por Strongylida/imunologia , Células Th1/metabolismo , Células Th2/metabolismo , Anemia , Animais , Feminino , Larva , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Malária/complicações , Malária/patologia , Malária/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Nippostrongylus/patogenicidade , Plasmodium chabaudi/patogenicidade , Infecções por Strongylida/complicações , Infecções por Strongylida/patologia , Infecções por Strongylida/fisiopatologia , Células Th1/imunologia , Células Th1/parasitologia , Células Th1/patologia , Células Th2/imunologia , Células Th2/parasitologia , Células Th2/patologia , Cicatrização
8.
Evol Appl ; 2(1): 122-31, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25567852

RESUMO

Antigen specificity of adaptive immune responses is often in the host's best interests, but with important and as yet unpredictable exceptions. For example, antibodies that bind to multiple flaviviral or malarial species can provide hosts with simultaneous protection against many parasite genotypes. Vaccinology often aims to harness such imprecision, because cross-reactive antibodies might provide broad-spectrum protection in the face of antigenic variation by parasites. However, the causes of cross-reactivity among immune responses are not always known, and here, we explore potential proximate and evolutionary explanations for cross-reactivity. We particularly consider whether cross-reactivity is the result of constraints on the ability of the immune system to process information about the world of antigens, or whether an intermediate level of cross-reactivity may instead represent an evolutionary optimum. We conclude with a series of open questions for future interdisciplinary research, including the suggestion that the evolutionary ecology of information processing might benefit from close examination of immunological data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA