Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 11(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766908

RESUMO

(1) Background: Healthcare professionals´ clinical practice, their care of patients and the clinical decision-making process may be influenced by ethical and moral sensitivity. However, such outcomes have been scarcely studied in physical therapists. This study aimed to explore ethical sensitivity and moral sensitivity in practicing physical therapists, and to compare both variables by gender. (2) Methods: Cross-sectional study. 75 physical therapists (58.7% women; average age = 34.56 (8.68) years) were asked to fill in questionnaires measuring ethical sensitivity (Ethical Sensitivity Scale Questionnaire) and moral sensitivity (Revised-Moral Sensitivity Questionnaire). (3) Results: The sample showed high ethical sensitivity (116.14 ± 15.87 over 140) and high moral sensitivity (40.58 ± 5.36 over 54). When comparing by gender, women reported significantly higher ethical sensitivity than men (p = 0.043), as well as higher scores in the following dimensions: Caring by connecting with others (p = 0.012) and Working with interpersonal and group differences (p = 0.028). However, no differences were found in moral sensitivity (p = 0.243). (4) Conclusion: Physical therapists showed high levels of ethical and moral sensitivity, whilst women reported higher ethical sensitivity than men. Understanding physical therapists´ ethical and moral sensitivity is essential to design and implement integrated education programs directed to improve the quality of care of patients in their daily clinical practice.

2.
AMB Express ; 10(1): 163, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894363

RESUMO

Bacillus velezensis 83 was isolated from mango tree phyllosphere of orchards located in El Rosario, Sinaloa, México. The assessment of this strain as BCA (biological control agent), as well as PGPB (plant growth-promoting bacteria), were demonstrated through in vivo and in vitro assays. In vivo assays showed that B. velezensis 83 was able to control anthracnose (Kent mangoes) as efficiently as chemical treatment with Captan 50 PH™ or Cupravit hidro™. The inoculation of B. velezensis 83 to the roots of maize seedlings yielded an increase of 12% in height and 45% of root biomass, as compared with uninoculated seedlings. In vitro co-culture assays showed that B. velezensis 83 promoted Arabidopsis thaliana growth (root and shoot biomass) while, under the same experimental conditions, B. velezensis FZB42 (reference strain) had a suppressive effect on plant growth. In order to characterize the isolated strain, the complete genome sequence of B. velezensis 83 is reported. Its circular genome consists of 3,997,902 bp coding to 3949 predicted genes. The assembly and annotation of this genome revealed gene clusters related with plant-bacteria interaction and sporulation, as well as ten secondary metabolites biosynthetic gene clusters implicated in the biological control of phytopathogens. Despite the high genomic identity (> 98%) between B. velezensis 83 and B. velezensis FZB42, they are phenotypically different. Indeed, in vitro production of compounds such as surfactin and bacillomycin D (biocontrol activity) and γ-PGA (biofilm component) is significantly different between both strains.

3.
J Biotechnol ; 299: 57-65, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31055146

RESUMO

Bacillus amyloliquefaciens spores have been used as the principal ingredient of biocontrol products. However, during the process of spore production, wild-type strains produce poly-γ-glutamic acid (γ-PGA), an undesirable byproduct that increases broth viscosity and hinders recovery and drying. This work examined the influence of specific glucose uptake rates (qGluc) in glucose-controlled overflow metabolism. Diverse scenarios, from glucose limitation to glucose sufficiency, were evaluated in continuous cultures to control qGluc. Cell yields of glucose were higher at low qGluc, while the opposing trend was found for γ-PGA and other overflow metabolic byproducts yields. However, γ-PGA production was still detectable in cultures with the highest glucose limitation (D = 0.06 h-1), even though high sporulation incidence was observed in these cultures. Indeed, in such conditions, nonsporulating vegetative cells seem to maintain glucose overflow metabolism, allowing limited γ-PGA production. These findings can be used to establish fed-batch culture strategies for high cell density Bacillus amyloliquefaciens cultures where γ-PGA production (and apparent viscosity) is significantly reduced. This is the first time that the dependence of qGluc on growth, sporulation and carbon overflow metabolism of a spore and biofilm producer, Bacillus amyloliquefaciens strain, has been reported.


Assuntos
Bacillus amyloliquefaciens/crescimento & desenvolvimento , Glucose/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus amyloliquefaciens/metabolismo , Técnicas de Cultura Celular por Lotes , Engenharia Metabólica , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Esporos Bacterianos/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA