Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36830599

RESUMO

The deposition of dense fibril plaques represents the pathological hallmark for a multitude of human disorders, including many neurodegenerative diseases. Fibril plaques are predominately composed of amyloid fibrils, characterized by their underlying cross beta-sheet architecture. Research into the mechanisms of amyloid formation has mostly focused on characterizing and modeling the growth of individual fibrils and associated oligomers from their monomeric precursors. Much less is known about the mechanisms causing individual fibrils to assemble into ordered fibrillar suprastructures. Elucidating the mechanisms regulating this "secondary" self-assembly into distinct suprastructures is important for understanding how individual protein fibrils form the prominent macroscopic plaques observed in disease. Whether and how amyloid fibrils assemble into either 2D or 3D supramolecular structures also relates to ongoing efforts on using amyloid fibrils as substrates or scaffolds for self-assembling functional biomaterials. Here, we investigated the conditions under which preformed amyloid fibrils of a lysozyme assemble into larger superstructures as a function of charge screening or pH. Fibrils either assembled into three-dimensional gel clusters or two-dimensional fibril sheets. The latter displayed optical birefringence, diagnostic of amyloid plaques. We presume that pH and salt modulate fibril charge repulsion, which allows anisotropic fibril-fibril attraction to emerge and drive the transition from 3D to 2D fibril self-assembly.


Assuntos
Amiloide , Doenças Neurodegenerativas , Humanos , Amiloide/química , Proteínas Amiloidogênicas , Cloreto de Sódio , Peptídeos beta-Amiloides/química
2.
Microbiol Resour Announc ; 11(7): e0037622, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35758688

RESUMO

CaiB is a DR cluster actinobacteriophage that was isolated from soil in Florida using Gordonia rubripertincta NRRL B-16540 as the host. The genome is 61,620 bp, has a GC content of 68.6%, and contains 85 predicted protein coding genes. CaiB has several putative operons and has repeated intergenic regions that may be involved in gene regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA