Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8899, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632348

RESUMO

Robotic automation is proving itself indispensable in the modern Chemistry laboratory, but adoption is slowed down by the technical challenges of implementing such systems. This paper reports on a novel adaptive gripper mechanism that can easily and reliably grasp cylindrical and prismatic objects of various sizes with limited clearance required. The proposed design exploits the inherent compliance of a cable that is driven to fully envelope the target object. The cable is run through a rigid finger, allowing the loop to be placed around objects with minimal clearance required and to provide support for the object once the grip is complete. Thanks to the compliant nature of the mechanism, the gripper requires minimal control effort to complete a gasping task. A prototype of the gripper has been designed and built for chemistry automation tasks, where it showed very high grasp reliability with ≤ 1 % grasp failures.

2.
Chem Sci ; 15(7): 2456-2463, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362408

RESUMO

Automation can transform productivity in research activities that use liquid handling, such as organic synthesis, but it has made less impact in materials laboratories, which require sample preparation steps and a range of solid-state characterization techniques. For example, powder X-ray diffraction (PXRD) is a key method in materials and pharmaceutical chemistry, but its end-to-end automation is challenging because it involves solid powder handling and sample processing. Here we present a fully autonomous solid-state workflow for PXRD experiments that can match or even surpass manual data quality, encompassing crystal growth, sample preparation, and automated data capture. The workflow involves 12 steps performed by a team of three multipurpose robots, illustrating the power of flexible, modular automation to integrate complex, multitask laboratories.

3.
Digit Discov ; 2(5): 1540-1547, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-38013903

RESUMO

Closed-loop experiments can accelerate material discovery by automating both experimental manipulations and decisions that have traditionally been made by researchers. Fast and non-invasive measurements are particularly attractive for closed-loop strategies. Viscosity is a physical property for fluids that is important in many applications. It is fundamental in application areas such as coatings; also, even if viscosity is not the key property of interest, it can impact our ability to do closed-loop experimentation. For example, unexpected increases in viscosity can cause liquid-handling robots to fail. Traditional viscosity measurements are manual, invasive, and slow. Here we use convolutional neural networks (CNNs) as an alternative to traditional viscometry by non-invasively extracting the spatiotemporal features of fluid motion under flow. To do this, we built a workflow using a dual-armed collaborative robot that collects video data of fluid motion autonomously. This dataset was then used to train a 3-dimensional convolutional neural network (3D-CNN) for viscosity estimation, either by classification or by regression. We also used these models to identify unknown laboratory solvents, again based on differences in fluid motion. The 3D-CNN model performance was compared with the performance of a panel of human participants for the same classification tasks. Our models strongly outperformed human classification in both cases. For example, even with training on fewer than 50 videos for each liquid, the 3D-CNN model gave an average accuracy of 88% for predicting the identity of five different laboratory solvents, compared to an average accuracy of 32% for human observation. For comparison, random category selection would give an average accuracy of 20%. Our method offers an alternative to traditional viscosity measurements for autonomous chemistry workflows that might be used both for process control (e.g., choosing not to pipette liquids that are too viscous) or for materials discovery (e.g., identifying new polymerization catalysts on the basis of viscosification).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA