Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Anticancer Res ; 43(2): 781-788, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697103

RESUMO

BACKGROUND/AIM: The present study aimed to investigate radiomics features derived from magnetic resonance imaging (MRI) in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). PATIENTS AND METHODS: We retrospectively evaluated data of 53 patients (32 males, 21 females) with T3/T4 or N+ rectal cancer who underwent MRI before and after CRT. Twenty-seven texture radiomics features were extracted from regions of interest, delimiting the tumor on T2-weighted images. RESULTS: All 27 radiomics features extracted before CRT showed a statistically significant association with the tumor regression grade (TRG) (p<0.05), whereas, after CRT, only the Cluster Prominence value was the only variable to predict TRG (p=0.037, r=0.291). CONCLUSION: All 27 features extracted before CRT were able to predict response to CRT and Cluster Prominence continued to be statistically significant even after CRT. The impact of radiomics features derived from MRI could be further investigated in patients with locally advanced rectal cancer.


Assuntos
Segunda Neoplasia Primária , Neoplasias Retais , Masculino , Feminino , Humanos , Estudos Retrospectivos , Quimiorradioterapia/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Reto/patologia , Terapia Neoadjuvante/métodos , Segunda Neoplasia Primária/patologia , Resultado do Tratamento
2.
Eur Radiol Exp ; 6(1): 53, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344838

RESUMO

NAVIGATOR is an Italian regional project boosting precision medicine in oncology with the aim of making it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project's goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e., standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.


Assuntos
Inteligência Artificial , Medicina de Precisão , Medicina de Precisão/métodos , Bancos de Espécimes Biológicos , Tomografia por Emissão de Pósitrons , Biomarcadores
3.
Abdom Radiol (NY) ; 47(11): 3855-3867, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35943517

RESUMO

PURPOSE: The purpose of the study was to assess the diagnostic accuracy of ADC ratio and to evaluate its efficacy in reducing the number of false positives in prostatic mpMRI. MATERIALS AND METHODS: All patients who underwent an mpMRI and a targeted fusion biopsy in our institution from 2016 to 2021 were retrospectively selected. Two experienced readers (R1 and R2) independently evaluated the images, blindly to biopsy results. The radiologists assessed the ADC ratios by tracing a circular 10 mm2 ROI on the biopsied lesion and on the apparently benign contralateral parenchyma. Prostate cancers were divided into non-clinically significant (nsPC, Gleason score = 6) and clinically significant (sPC, Gleason score ≥ 7). ROC analyses were performed. RESULTS: 167 patients and188 lesions were included. Concordance was 0.62 according to Cohen's K. ADC ratio showed an AUC for PCAs of 0.78 in R1 and 0.8 in R2. The AUC for sPC was 0.85 in R1 and 0.84 in R2. The 100% sensitivity cut-off for sPCs was 0.65 (specificity 25.6%) in R1 and 0.66 (specificity 27.4%) in R2. Forty-three benign or not clinically significant lesions were above the 0.65 threshold in R1; 46 were above the 0.66 cut-off in R2. This would have allowed to avoid an equal number of unnecessary biopsies at the cost of 2 nsPCs in R1 and one nsPC in R2. CONCLUSION: In our sample, the ADC ratio was a useful and accurate tool that could potentially reduce the number of false positives in mpMRI.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Biópsia , Humanos , Biópsia Guiada por Imagem , Masculino , Gradação de Tumores , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Estudos Retrospectivos
4.
Radiol Med ; 127(4): 369-382, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35279765

RESUMO

During the coronavirus disease 19 (COVID-19) pandemic, extracorporeal membrane oxygenation (ECMO) has been proposed as a possible therapy for COVID-19 patients with acute respiratory distress syndrome. This pictorial review is intended to provide radiologists with up-to-date information regarding different types of ECMO devices, correct placement of ECMO cannulae, and imaging features of potential complications and disease evolution in COVID-19 patients treated with ECMO, which is essential for a correct interpretation of diagnostic imaging, so as to guide proper patient management.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Radiologistas , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2
5.
Eur Radiol ; 32(6): 4314-4323, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35028751

RESUMO

INTRODUCTION: Computer-Aided Lung Informatics for Pathology Evaluation and Ratings (CALIPER) software has already been widely used in the evaluation of interstitial lung diseases (ILD) but has not yet been tested in patients affected by COVID-19. Our aim was to use it to describe the relationship between Coronavirus Disease 2019 (COVID-19) outcome and the CALIPER-detected pulmonary vascular-related structures (VRS). MATERIALS AND METHODS: We performed a multicentric retrospective study enrolling 570 COVID-19 patients who performed a chest CT in emergency settings in two different institutions. Fifty-three age- and sex-matched healthy controls were also identified. Chest CTs were analyzed with CALIPER identifying the percentage of VRS over the total lung parenchyma. Patients were followed for up to 72 days recording mortality and required intensity of care. RESULTS: There was a statistically significant difference in VRS between COVID-19-positive patients and controls (median (iqr) 4.05 (3.74) and 1.57 (0.40) respectively, p = 0.0001). VRS showed an increasing trend with the severity of care, p < 0.0001. The univariate Cox regression model showed that VRS increase is a risk factor for mortality (HR 1.17, p < 0.0001). The multivariate analysis demonstrated that VRS is an independent explanatory factor of mortality along with age (HR 1.13, p < 0.0001). CONCLUSION: Our study suggests that VRS increases with the required intensity of care, and it is an independent explanatory factor for mortality. KEY POINTS: • The percentage of vascular-related structure volume (VRS) in the lung is significatively increased in COVID-19 patients. • VRS showed an increasing trend with the required intensity of care, test for trend p< 0.0001. • Univariate and multivariate Cox models showed that VRS is a significant and independent explanatory factor of mortality.


Assuntos
COVID-19 , Humanos , Informática , Pulmão/diagnóstico por imagem , Estudos Retrospectivos , Software
6.
J Digit Imaging ; 35(3): 424-431, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35091874

RESUMO

The National Health Systems have been severely stressed out by the COVID-19 pandemic because 14% of patients require hospitalization and oxygen support, and 5% require admission to an Intensive Care Unit (ICU). Relationship between COVID-19 prognosis and the extent of alterations on chest CT obtained by both visual and software-based quantification that expresses objective evaluations of the percentage of ventilated lung parenchyma compared to the affected one has been proven. While commercial applications for automatic medical image computing and visualization are expensive and limited in their spread, the open-source systems are characterized by not enough standardization and time-consuming troubles. We analyzed chest CT exams on 246 patients suspected of COVID-19 performed in the Emergency Department CT room. The lung parenchyma segmentation was obtained by a threshold-based method using the open-source 3D Slicer software and software tools called "Segment Editor" and "Segment Quantification." For the three main characteristics analyzed on lungs affected by COVID-19 pneumonia, a specifical densitometry value range was defined: from - 950 to - 700 HU for well-aerated parenchyma; from - 700 to - 250 HU for interstitial lung disease; from - 250 to 250 HU for parenchymal consolidation. For the well-aerated parenchyma and the interstitial alterations, the procedure was semi-automatic with low time consumption, whereas consolidations' analysis needed manual interventions by the operator. After the chest CT, 13% of the sample was admitted to intensive care, while 34% of them to the sub-intensive care. In patients moved to intensive care, the parenchyma analysis reported a higher crazy paving presentation. The quantitative analysis of the alterations affecting the lung parenchyma of patients with COVID-19 pneumonia can be performed by threshold method segmentation on 3D Slicer. The segmentation could have an important role in the quantification in different COVID-19 pneumonia presentations, allowing to help the clinician in the correct management of patients.


Assuntos
COVID-19 , COVID-19/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
7.
Minerva Med ; 113(1): 158-171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34856780

RESUMO

INTRODUCTION: Coronavirus disease 19 (COVID-19) is an infectious disease caused by the newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have plenty of data about the clinical features of the disease's acute phase, while little is known about the long-term consequences on survivors. EVIDENCE ACQUISITION: We aimed to review systematically emerging evidence about clinical and functional consequences of COVID-19 pneumonia months after hospital discharge. EVIDENCE SYNTHESIS: Current evidence supports the idea that a high proportion of COVID-19 survivors complain of symptoms months after the acute illness phase, being fatigue and reduced tolerance to physical effort the most frequently reported symptom. The strongest association for these symptoms is with the female gender, while disease severity seems less relevant. Respiratory symptoms are associated with a decline in respiratory function and, conversely, seem to be more frequent in those who experienced a more severe acute pneumonia. Current evidence highlighted a persistent motor impairment which is, again, more prevalent among those survivors who experienced a more severe acute phase of the disease. Additionally, the persistence of symptoms is a primary determinant of mental health outcome, with anxiety, depression, sleep disturbances, and post-traumatic stress symptoms being commonly reported in COVID-19 survivors. CONCLUSIONS: Current literature highlights the importance of a multidisciplinary approach to Coronavirus Disease 19 since the sequelae appear to involve different organs and systems. Given the pandemic outbreak's size, this is a critical public health issue: a better insight on this topic should inform clinical decisions about the modalities of follow-up for COVID-19 survivors.


Assuntos
COVID-19 , Ansiedade/etiologia , COVID-19/complicações , Fadiga/etiologia , Feminino , Humanos , Pandemias , SARS-CoV-2
8.
Lung ; 199(5): 493-500, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562105

RESUMO

PURPOSE: The use of Electromagnetic navigation bronchoscopy (ENB) for the diagnosis of pulmonary peripheral lesions is still debated due to its variable diagnostic yield; a new 4D ENB system, acquiring inspiratory and expiratory computed tomography (CT) scans, overcomes respiratory motion and uses tracked sampling instruments, reaching higher diagnostic yields. We aimed at evaluating diagnostic yield and accuracy of a 4D ENB system in sampling pulmonary lesions and at describing their influencing factors. METHODS: We conducted a three-year retrospective observational study including all patients with pulmonary lesions who underwent 4D ENB with diagnostic purposes; all the factors potentially influencing diagnosis were recorded. RESULTS: 103 ENB procedures were included; diagnostic yield and accuracy were, respectively, 55.3% and 66.3%. We reported a navigation success rate of 80.6% and a diagnosis with ENB was achieved in 68.3% of cases; sensitivity for malignancy was 61.8%. The majority of lesions had a bronchus sign on CT, but only the size of lesions influenced ENB diagnosis (p < 0.05). Transbronchial needle aspiration biopsy was the most used tool (93.2% of times) with the higher diagnostic rate (70.2%). We reported only one case of pneumothorax. CONCLUSION: The diagnostic performance of a 4D ENB system is lower than other previous navigation systems used in research settings. Several factors still influence the reachability of the lesion and therefore diagnostic yield. Patient selection, as well as the multimodality approach of the lesion, is strongly recommended to obtain higher diagnostic yield and accuracy, with a low rate of complications.


Assuntos
Broncoscopia , Neoplasias Pulmonares , Brônquios , Fenômenos Eletromagnéticos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
J Breath Res ; 15(4)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34464944

RESUMO

The evidence that severe coronavirus disease 2019 (COVID-19) is a risk factor for development of mycotic respiratory infection with an increased mortality is rising. Immunosuppressed are among the most susceptible patients andAspergillusspecies is the most feared superinfection. In this study we evaluated mycotic isolation prevalence on bronchoalveolar lavage (BAL) of patients who underwent bronchoscopy in search of severe acute respiratory coronavirus 2 (SARS-CoV-2) RNA. Moreover, we described the clinical characteristics and main outcomes of these patients. We included 118 patients, 35.9% of them were immunosuppressed for different reasons: in 23.7% we isolated SARS-CoV-2 RNA, in 33.1% we identified at least one mycotic agent and both in 15.4%. On BAL we observed in three casesAspergillusspp, in six casesPneumocystisand in 32Candidaspp. The prevalence of significant mold infection was 29.3% and 70.7% of cases were false positive or clinically irrelevant infections. In-hospital mortality of patients with fungal infection was 15.3%. The most frequent computed tomography (CT) pattern, evaluated with the Radiological Society of North America consensus statement, among patients with a mycotic pulmonary infection was the atypical one (p< 0.0001). Mycotic isolation on BAL may be interpreted as an innocent bystander, but its identification could influence the prognosis of patients, especially in those who need invasive investigations during the COVID-19 pandemic; BAL plays a fundamental role in resolving clinical complex cases, especially in immunosuppressed patients independently from radiological features, without limiting its role in ruling out SARS-CoV-2 infection.


Assuntos
Lavagem Broncoalveolar , COVID-19/diagnóstico , COVID-19/epidemiologia , Micoses/diagnóstico , Micoses/epidemiologia , Nasofaringe/microbiologia , SARS-CoV-2 , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Micoses/microbiologia , Nasofaringe/virologia , Pandemias , Prevalência , Prognóstico , RNA Viral/análise , RNA Viral/genética , RNA Viral/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
10.
Clin Imaging ; 80: 58-66, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34246044

RESUMO

PURPOSE: Comparison of deep learning algorithm, radiomics and subjective assessment of chest CT for predicting outcome (death or recovery) and intensive care unit (ICU) admission in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: The multicenter, ethical committee-approved, retrospective study included non-contrast-enhanced chest CT of 221 SARS-CoV-2 positive patients from Italy (n = 196 patients; mean age 64 ± 16 years) and Denmark (n = 25; mean age 69 ± 13 years). A thoracic radiologist graded presence, type and extent of pulmonary opacities and severity of motion artifacts in each lung lobe on all chest CTs. Thin-section CT images were processed with CT Pneumonia Analysis Prototype (Siemens Healthineers) which yielded segmentation masks from a deep learning (DL) algorithm to derive features of lung abnormalities such as opacity scores, mean HU, as well as volume and percentage of all-attenuation and high-attenuation (opacities >-200 HU) opacities. Separately, whole lung radiomics were obtained for all CT exams. Analysis of variance and multiple logistic regression were performed for data analysis. RESULTS: Moderate to severe respiratory motion artifacts affected nearly one-quarter of chest CTs in patients. Subjective severity assessment, DL-based features and radiomics predicted patient outcome (AUC 0.76 vs AUC 0.88 vs AUC 0.83) and need for ICU admission (AUC 0.77 vs AUC 0.0.80 vs 0.82). Excluding chest CT with motion artifacts, the performance of DL-based and radiomics features improve for predicting ICU admission. CONCLUSION: DL-based and radiomics features of pulmonary opacities from chest CT were superior to subjective assessment for differentiating patients with favorable and adverse outcomes.


Assuntos
COVID-19 , Aprendizado Profundo , Idoso , Idoso de 80 Anos ou mais , Humanos , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
11.
J Pers Med ; 11(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204911

RESUMO

Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann-Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification.

12.
J Public Health Res ; 10(3)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33876627

RESUMO

BACKGROUND: In December 2019, a cluster of unknown etiology pneumonia cases occurred in Wuhan, China leading to identification of the responsible pathogen as SARS-coV-2. Since then, the coronavirus disease 2019 (COVID-19) has spread to the entire world. Computed Tomography (CT) is frequently used to assess severity and complications of COVID-19 pneumonia. The purpose of this study is to compare the CT patterns and clinical characteristics in intensive care unit (ICU) and non-ICU patients with COVID-19 pneumonia. DESIGN AND METHODS: This retrospective study included 218 consecutive patients (136 males; 82 females; mean age 63±15 years) with laboratory-confirmed SARS-coV-2. Patients were categorized in two different groups: (a) ICU patients and (b) non-ICU inpatients. We assessed the type and extent of pulmonary opacities on chest CT exams and recorded the information on comorbidities and laboratory values for all patients. RESULTS: Of the 218 patients, 23 (20 males: 3 females; mean age 60 years) required ICU admission, 195 (118 males: 77 females, mean age 64 years) were admitted to a clinical ward. Compared with non-ICU patients, ICU patients were predominantly males (60% versus 83% p=0.03), had more comorbidities, a positive CRP (p=0.04) and higher LDH values (p=0.008). ICU patients' chest CT demonstrated higher incidence of consolidation (p=0.03), mixed lesions (p=0.01), bilateral opacities (p<0.01) and overall greater lung involvement by consolidation (p=0.02) and GGO (p=0.001). CONCLUSIONS: CT imaging features of ICU patients affected by COVID-19 are significantly different compared with non-ICU patients. Identification of CT features could assist in a stratification of the disease severity and supportive treatment.

13.
Phys Med ; 84: 125-131, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33894582

RESUMO

PURPOSE: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. METHODS: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). RESULTS: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11-40% relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027-0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). CONCLUSIONS: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses.


Assuntos
COVID-19 , Proteção Radiológica , Adulto , Braço , Humanos , Irã (Geográfico) , Itália/epidemiologia , Pandemias , Doses de Radiação , SARS-CoV-2
14.
Radiology ; 300(2): E328-E336, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724065

RESUMO

Background Lower muscle mass is a known predictor of unfavorable outcomes, but its prognostic impact on patients with COVID-19 is unknown. Purpose To investigate the contribution of CT-derived muscle status in predicting clinical outcomes in patients with COVID-19. Materials and Methods Clinical or laboratory data and outcomes (intensive care unit [ICU] admission and death) were retrospectively retrieved for patients with reverse transcriptase polymerase chain reaction-confirmed SARS-CoV-2 infection, who underwent chest CT on admission in four hospitals in Northern Italy from February 21 to April 30, 2020. The extent and type of pulmonary involvement, mediastinal lymphadenopathy, and pleural effusion were assessed. Cross-sectional areas and attenuation by paravertebral muscles were measured on axial CT images at the T5 and T12 vertebral level. Multivariable linear and binary logistic regression, including calculation of odds ratios (ORs) with 95% CIs, were used to build four models to predict ICU admission and death, which were tested and compared by using receiver operating characteristic curve analysis. Results A total of 552 patients (364 men and 188 women; median age, 65 years [interquartile range, 54-75 years]) were included. In a CT-based model, lower-than-median T5 paravertebral muscle areas showed the highest ORs for ICU admission (OR, 4.8; 95% CI: 2.7, 8.5; P < .001) and death (OR, 2.3; 95% CI: 1.0, 2.9; P = .03). When clinical variables were included in the model, lower-than-median T5 paravertebral muscle areas still showed the highest ORs for both ICU admission (OR, 4.3; 95%: CI: 2.5, 7.7; P < .001) and death (OR, 2.3; 95% CI: 1.3, 3.7; P = .001). At receiver operating characteristic analysis, the CT-based model and the model including clinical variables showed the same area under the receiver operating characteristic curve (AUC) for ICU admission prediction (AUC, 0.83; P = .38) and were not different in terms of predicting death (AUC, 0.86 vs AUC, 0.87, respectively; P = .28). Conclusion In hospitalized patients with COVID-19, lower muscle mass on CT images was independently associated with intensive care unit admission and in-hospital mortality. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
COVID-19/complicações , Radiografia Torácica/métodos , Sarcopenia/complicações , Sarcopenia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Valor Preditivo dos Testes , Estudos Retrospectivos , SARS-CoV-2
15.
Int J Comput Assist Radiol Surg ; 16(3): 423-434, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33532975

RESUMO

BACKGROUND: COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans. METHODOLOGY: Six models, two traditional machine learning (ML)-based (k-NN and RF), two transfer learning (TL)-based (VGG19 and InceptionV3), and the last two were our custom-designed deep learning (DL) models (CNN and iCNN), were developed for classification between COVID pneumonia (CoP) and non-COVID pneumonia (NCoP). K10 cross-validation (90% training: 10% testing) protocol on an Italian cohort of 100 CoP and 30 NCoP patients was used for performance evaluation and bispectrum analysis for CT lung characterisation. RESULTS: Using K10 protocol, our results showed the accuracy in the order of DL > TL > ML, ranging the six accuracies for k-NN, RF, VGG19, IV3, CNN, iCNN as 74.58 ± 2.44%, 96.84 ± 2.6, 94.84 ± 2.85%, 99.53 ± 0.75%, 99.53 ± 1.05%, and 99.69 ± 0.66%, respectively. The corresponding AUCs were 0.74, 0.94, 0.96, 0.99, 0.99, and 0.99 (p-values < 0.0001), respectively. Our Bispectrum-based characterisation system suggested CoP can be separated against NCoP using AI models. COVID risk severity stratification also showed a high correlation of 0.7270 (p < 0.0001) with clinical scores such as ground-glass opacities (GGO), further validating our AI models. CONCLUSIONS: We prove our hypothesis by demonstrating that all the six AI models successfully classified CoP against NCoP due to the strong presence of contrasting features such as ground-glass opacities (GGO), consolidations, and pleural effusion in CoP patients. Further, our online system takes < 2 s for inference.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
16.
J Med Syst ; 45(3): 28, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496876

RESUMO

Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41 ± 5.12%, 0.991 (p < 0.0001), and 99.41 ± 0.62%, 0.988 (p < 0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p < 0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated.


Assuntos
Inteligência Artificial/normas , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Aprendizado Profundo/normas , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , SARS-CoV-2 , Índice de Gravidade de Doença
18.
Med Image Anal ; 67: 101844, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091743

RESUMO

While image analysis of chest computed tomography (CT) for COVID-19 diagnosis has been intensively studied, little work has been performed for image-based patient outcome prediction. Management of high-risk patients with early intervention is a key to lower the fatality rate of COVID-19 pneumonia, as a majority of patients recover naturally. Therefore, an accurate prediction of disease progression with baseline imaging at the time of the initial presentation can help in patient management. In lieu of only size and volume information of pulmonary abnormalities and features through deep learning based image segmentation, here we combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit (ICU) admission. To our knowledge, this is the first study that uses holistic information of a patient including both imaging and non-imaging data for outcome prediction. The proposed methods were thoroughly evaluated on datasets separately collected from three hospitals, one in the United States, one in Iran, and another in Italy, with a total 295 patients with reverse transcription polymerase chain reaction (RT-PCR) assay positive COVID-19 pneumonia. Our experimental results demonstrate that adding non-imaging features can significantly improve the performance of prediction to achieve AUC up to 0.884 and sensitivity as high as 96.1%, which can be valuable to provide clinical decision support in managing COVID-19 patients. Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia. The source code of our work is available at https://github.com/DIAL-RPI/COVID19-ICUPrediction.


Assuntos
COVID-19/diagnóstico por imagem , Unidades de Terapia Intensiva/estatística & dados numéricos , Admissão do Paciente/estatística & dados numéricos , Pneumonia Viral/diagnóstico por imagem , Adulto , Idoso , COVID-19/epidemiologia , Conjuntos de Dados como Assunto , Progressão da Doença , Feminino , Humanos , Irã (Geográfico)/epidemiologia , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , SARS-CoV-2 , Estados Unidos/epidemiologia
19.
Brain Sci ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339434

RESUMO

In amyotrophic lateral sclerosis (ALS), magnetic resonance imaging (MRI) allows investigation at the microstructural level, employing techniques able to reveal white matter changes. In the current study, a diffusion tensor imaging (DTI) analysis, with a collection of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) indexes, was performed in ALS patients to correlate geno- and phenotype features with MRI data, to investigate an in-vivo correlation of different neuropathological patterns. All patients who underwent the MR-DTI analysis were retrospectively recruited. MRI scan was collected within three months from diagnosis. FA and ADC values were collected in corpus callosum (CC), corona radiata (CR), cerebral peduncle (CR), cerebellar peduncle (CbP) and corticospinal tract at posterior limb of internal capsule (CST). DTI analysis performed in the whole ALS cohort revealed significant FA reduction and ADC increase in all selected regions, as widespread changes. Moreover, we observed a higher value of FA in rCR in bulbar patients. A positive correlation between ALS Functional Rating Scale-Revised and FA in rCP was evident. In consideration of the non-invasiveness, the reliability and the easy reproducibility of the method, we believe that brain MRI with DTI analyses may represent a valid tool usable as a diagnostic marker in ALS.

20.
Eur J Radiol ; 130: 109192, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32738464

RESUMO

OBJECTIVES: The goal of this study was to assess chest computed tomography (CT) diagnostic accuracy in clinical practice using RT-PCR as standard of reference. METHODS: From March 4th to April 9th 2020, during the peak of the Italian COVID-19 epidemic, we enrolled a series of 773 patients that performed both non-contrast chest CT and RT-PCR with a time interval no longer than a week due to suspected SARS-CoV-2 infection. The diagnostic performance of CT was evaluated according to sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy, considering RT-PCR as the reference standard. An analysis on the patients with discrepant CT scan and RT-PCR result and on the patient with both negative tests was performed. RESULTS: RT-PCR testing showed an overall positive rate of 59.8 %. CT sensitivity, specificity, PPV, NPV, and accuracy for SARS-CoV-2 infection were 90.7 % [95 % IC, 87.7%-93.2%], 78.8 % [95 % IC, 73.8-83.2%], 86.4 % [95 % IC, 76.1 %-88.9 %], 85.1 % [95 % IC, 81.0 %-88.4] and 85.9 % [95 % IC 83.2-88.3%], respectively. Twenty-five/66 (37.6 %) patients with positive CT and negative RT-PCR results and 12/245 (4.9 %) patients with both negative tests were nevertheless judged as positive cases by the clinicians based on clinical and epidemiological criteria and consequently treated. CONCLUSIONS: In our experience, in a context of high pre-test probability, CT scan shows good sensitivity and a consistently higher specificity for the diagnosis of COVID-19 pneumonia than what reported by previous studies, especially when clinical and epidemiological features are taken into account.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , COVID-19 , Infecções por Coronavirus/diagnóstico por imagem , Feminino , Humanos , Itália , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA