RESUMO
The present study aims to describe a new genus and species of microphalloid digenean parasite of two species of bats of the genus Peropteryx from the Mexican Neotropics (in the states of Chiapas and Yucatán). Morphological and molecular data (28s rDNA ribosomal gene sequences) were used to study Digeneans. Sagittatrema zutzi gen. nov. sp., nov., is diagnosed morphologically by having a sagittiform body, a genital pore in the midline of the body, posterior to the ventral sucker, and a cirrus sac running through much of the diameter of the ventral sucker. The nine sequences generated from the 28S rDNA gene were used to examine the phylogenetic affinities of this new taxon within the superfamily Microphalloidea Ward, 1901, using Maximum Likelihood and Bayesian Inference analyses. Both analyses resulted in trees with similar topologies and formed a well-supported clade (Bt = 100; pp = 1) with the Sagittatrema sequences. Because of the new genus's phylogenetic position and that some sister families to the proposed taxa, like Pleurogenidae and Prosthogonimidae, are polyphyletic, we prefer to consider Sagittatrema as a genus incertae sedis within Microphalloidea. A full systematic review of microphalloids is needed to confirm their phylogenetic position.
Assuntos
Quirópteros , DNA Ribossômico , Filogenia , RNA Ribossômico 28S , Trematódeos , Animais , México , Trematódeos/classificação , Trematódeos/genética , Trematódeos/anatomia & histologia , Trematódeos/isolamento & purificação , Quirópteros/parasitologia , RNA Ribossômico 28S/genética , DNA Ribossômico/genética , DNA de Helmintos/genética , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Análise de Sequência de DNARESUMO
Cyanobacterial components of microbialites from two geographically close systems, the Bacalar lagoon (BL) and the Cenote Azul sinkhole (CA) in Quintana Roo, Mexico, were characterized. BL and CA systems were studied along a longitudinal gradient (north to south) and a depth gradient (5-30 m), respectively. Microscopic observations, 16S rRNA amplicon sequencing, and shotgun metagenomics were used to characterize Cyanobacteria. Both systems showed similar metabolic/functional profiles but harbored completely different cyanobacterial taxa. BL was dominated by Nostocales, including a population of previously undescribed Chakia sp., while CA was dominated by an unknown taxon of Chroococcales, comprising 70% of relative abundance through all depths. Interestingly, cyanobacterial assemblages in microbialites exhibited phylogenetic overdispersion in most of the BL sites, while CA sites exhibited phylogenetic clustering, these differences were attributed to depth/light conditions and possibly different times of geological formation for BL and CA systems.
Assuntos
Cianobactérias , Cianobactérias/genética , Metagenômica , México , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
Anaerobic digestion of organic residues offers economic benefits via biogas production, still methane (CH4 ) yield relies on the development of a robust microbial consortia for adequate substrate degradation, among other factors. In this study, we monitor biogas production and changes in the microbial community composition in two semi-continuous stirred tank reactors during the setting process under mesophilic conditions (35°C) using a 16S rDNA high-throughput sequencing method. Reactors were initially inoculated with anaerobic granular sludge from a brewery wastewater treatment plant, and gradually fed organic urban residues (4·0 kg VS m-3 day-1 ) . The inocula and biomass samples showed changes related to adaptations of the community to urban organic wastes including a higher relative proportion of Clostridiales, with Ruminococcus spp. and Syntrophomonas spp. as recurrent species. Candidatus Cloacamonas spp. (Spirochaetes) also increased from ~2·2% in the inoculum to >10% in the reactor biomass. The new community consolidated the cellulose degradation and the propionate and amino acids fermentation processes. Acetoclastic methanogens were more abundant in the reactor, where Methanosaeta spp. was found as a key player. This study demonstrates a successful use of brewery treatment plant granular sludge to obtain a robust consortium for methane production from urban organic solid waste in Mexico. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the selection of relevant bacteria and archaea in anaerobic digesters inoculated with anaerobic granular sludge from a brewery wastewater treatment plant. Generally, these sludge granules are used to inoculate reactors digesting organic urban wastes. Though, it is still not clearly understood how micro-organisms respond to substrate variations during the reactor start-up process. After feeding two reactors with organic urban residues, it was found that a broader potential for cellulose degradation was developed including Bacteroidetes, Firmicutes and Spirochaetes. These results clarify the bacterial processes behind new reactors establishment for treating organic wastes in urban areas.
Assuntos
Archaea/fisiologia , Bactérias Anaeróbias/fisiologia , Reatores Biológicos/microbiologia , Consórcios Microbianos/fisiologia , Esgotos/microbiologia , Anaerobiose , Archaea/genética , Bactérias Anaeróbias/genética , Biocombustíveis/microbiologia , Fermentação , Metano/metabolismo , México , Consórcios Microbianos/genética , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologiaRESUMO
Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1',1'-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.