Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 146: 103774, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470035

RESUMO

Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.


Assuntos
Senilidade Prematura , Animais , Abelhas , Dieta , Ecossistema , Pólen , Transcriptoma
2.
Biomed Res Int ; 2020: 3968279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420338

RESUMO

Uterine corpus endometrial carcinoma (UCEC) is the second most common type of gynecological tumor. Several research studies have recently shown the potential of different ncRNAs as biomarkers for prognostics and diagnosis in different types of cancers, including UCEC. Thus, we hypothesized that long noncoding RNAs (lncRNAs) could serve as efficient factors to discriminate solid primary (TP) and normal adjacent (NT) tissues in UCEC with high accuracy. We performed an in silico differential expression analysis comparing TP and NT from a set of samples downloaded from the Cancer Genome Atlas (TCGA) database, targeting highly differentially expressed lncRNAs that could potentially serve as gene expression markers. All analyses were performed in R software. The receiver operator characteristics (ROC) analyses and both supervised and unsupervised machine learning indicated a set of 14 lncRNAs that may serve as biomarkers for UCEC. Functions and putative pathways were assessed through a coexpression network and target enrichment analysis.


Assuntos
Neoplasias do Endométrio , Perfilação da Expressão Gênica/métodos , Aprendizado de Máquina , RNA Longo não Codificante , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Bases de Dados Genéticas , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Humanos , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Curva ROC , Transcriptoma/genética
3.
Genet Mol Biol ; 43(1): e20190028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191789

RESUMO

The effects of non-nutritive sweeteners (NNS) on the gut microbiota are an area of increasing research interest due to their potential influence on weight gain, insulin resistance, and inflammation. Studies have shown that mice and rats fed saccharin develop weight gain and metabolic alterations, possibly related to changes in gut microbiota. Here, we hypothesized that chronic exposure to a commercial NNS would change the gut microbiota composition in Wistar rats when compared to sucrose exposure. To test this hypothesis, Wistar rats were fed either NNS- or sucrose-supplemented yogurt for 17 weeks alongside standard chow (ad libitum). The gut microbiome was assessed by 16S rDNA deep sequencing. Assembly and quantification were conducted using the Brazilian Microbiome Project pipeline for Ion Torrent data with modifications. Statistical analyses were performed in the R software environment. We found that chronic feeding of a commercial NNS-sweetened yogurt to Wistar rats, within the recommended dose range, did not significantly modify gut microbiota composition in comparison to sucrose-sweetened yogurt. Our findings do not support the hypothesis that moderate exposure to NNS is associated with changes in gut microbiota pattern compared to sucrose, at least in this experimental model.

4.
J Mol Neurosci ; 70(6): 981-992, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32056089

RESUMO

Medulloblastoma (MB), which originates from embryonic neural stem cells (NSCs) or neural precursors in the developing cerebellum, is the most common malignant brain tumor of childhood. Recurrent and metastatic disease is the principal cause of death and may be related to resistance within cancer stem cells (CSCs). Chromatin state is involved in maintaining signaling pathways related to stemness, and inhibition of histone deacetylase enzymes (HDAC) has emerged as an experimental therapeutic strategy to target this cell population. Here, we observed antitumor actions and changes in stemness induced by HDAC inhibition in MB. Analyses of tumor samples from patients with MB showed that the stemness markers BMI1 and CD133 are expressed in all molecular subgroups of MB. The HDAC inhibitor (HDACi) NaB reduced cell viability and expression of BMI1 and CD133 and increased acetylation in human MB cells. Enrichment analysis of genes associated with CD133 or BMI1 expression showed mitogen-activated protein kinase (MAPK)/ERK signaling as the most enriched processes in MB tumors. MAPK/ERK inhibition reduced expression of the stemness markers, hindered MB neurosphere formation, and its antiproliferative effect was enhanced by combination with NaB. These results suggest that combining HDAC and MAPK/ERK inhibitors may be a novel and more effective approach in reducing MB proliferation when compared to single-drug treatments, through modulation of the stemness phenotype of MB cells.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Meduloblastoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Antígeno AC133/genética , Antígeno AC133/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Células Tumorais Cultivadas
5.
PLoS One ; 14(3): e0213796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870522

RESUMO

Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.


Assuntos
Abelhas/genética , Epiderme/metabolismo , Epiderme/ultraestrutura , Hidrocarbonetos/análise , Proteínas de Insetos/genética , Tegumento Comum/fisiologia , Transcriptoma , Animais , Abelhas/crescimento & desenvolvimento , Feminino , Metamorfose Biológica
6.
Biomed Res Int ; 2018: 2864120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046591

RESUMO

Hepatocellular carcinoma (HCC) is the prevalent type of primary liver malignancy. Different noncoding RNAs (ncRNAs) that negatively regulate gene expression, such as the microRNAs and the long ncRNAs (lncRNAs), have been associated with cell invasiveness and cell dissemination, tumor recurrence, and metastasis in HCC. To evaluate which regulatory ncRNAs might be good candidates to disrupt HCC proliferation pathways, we performed both unsupervised and supervised analyses of HCC expression data, comparing samples of solid tumor tissue (TP) and adjacent tissue (NT) of a set of patients, focusing on ncRNAs and searching for common mechanisms that may shed light in future therapeutic options. All analyses were performed using the R software. Differential expression (total RNA and miRNA) and enrichment analyses (Gene Ontology + Pathways) were performed using the package TCGABiolinks. As a result, we improved the set of lncRNAs that could be the target of future studies in HCC, highlighting the potential of FAM170B-AS1 and TTN-AS1.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante , Carcinoma Hepatocelular/terapia , Conectina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/terapia , Masculino , Recidiva Local de Neoplasia , RNA não Traduzido , Proteínas de Plasma Seminal/genética
7.
Genet Mol Biol ; 41(2): 502-506, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782030

RESUMO

Lupinus albescens is a resistant cover plant that establishes symbiotic relationships with bacteria belonging to the Bradyrhizobium genus. This symbiosis helps the development of these plants in adverse environmental conditions, such as the ones found in arenized areas of Southern Brazil. This work studied three Bradyrhizobium sp. (AS23, NAS80 and NAS96) isolated from L. albescens plants that grow in extremely poor soils (arenized areas and adjacent grasslands). The genomes of these three strains were sequenced in the Ion Torrent platform using the IonXpress library preparation kit, and presented a total number of bases of 1,230,460,823 for AS23, 1,320,104,022 for NAS80, and 1,236,105,093 for NAS96. The genome comparison with closest strains Bradyrhizobium japonicum USDA6 and Bradyrhizobium diazoefficiens USDA110 showed important variable regions (with less than 80% of similarity). Genes encoding for factors for resistance/tolerance to heavy metal, flagellar motility, response to osmotic and oxidative stresses, heat shock proteins (present only in the three sequenced genomes) could be responsible for the ability of these microorganisms to survive in inhospitable environments. Knowledge about these genomes will provide a foundation for future development of an inoculant bioproduct that should optimize the recovery of degraded soils using cover crops.

8.
Nat Commun ; 8(1): 4, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232746

RESUMO

The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.


Assuntos
Abelhas , Comportamento Animal , Evolução Biológica , Animais , Feminino , Masculino , Agressão/fisiologia , Abelhas/anatomia & histologia , Abelhas/classificação , Abelhas/fisiologia , Comportamento Animal/fisiologia , Tamanho Corporal , Brasil , Filogenia
9.
PLoS One ; 11(12): e0167421, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907116

RESUMO

Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs ß bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs ß and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs ß and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones.


Assuntos
Abelhas/genética , Ecdisteroides/genética , Hormônios de Invertebrado/genética , Metamorfose Biológica/genética , Animais , Abelhas/crescimento & desenvolvimento , AMP Cíclico/genética , Ecdisteroides/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hormônios de Invertebrado/antagonistas & inibidores , Muda/genética , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Genome Biol ; 16: 76, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908251

RESUMO

BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.


Assuntos
Abelhas/genética , Comportamento Animal , Genes de Insetos , Comportamento Social , Animais , Venenos de Abelha/genética , Abelhas/classificação , Abelhas/fisiologia , Células Quimiorreceptoras/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Rearranjo Gênico , Genômica , Sequências Repetitivas Dispersas , Masculino , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Selenoproteínas/genética , Selenoproteínas/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia
11.
Insect Biochem Mol Biol ; 50: 68-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813723

RESUMO

Cuticular hydrocarbons (CHCs) are abundant in the superficial cuticular layer (envelope) of insects where they play roles as structural, anti-desiccation and semiochemical compounds. Many studies have investigated the CHC composition in the adult insects. However, studies on the profiles of these compounds during cuticle formation and differentiation are scarce and restrict to specific stages of a few insect species. We characterized the CHCs developmental profiles in the honeybee workers during an entire molting cycle (from pupal-to-adult ecdyses) and in mature adults (forager bees). Gas chromatography/mass spectrometry (GC/MS) analysis revealed remarkable differences in the relative quantities of CHCs, thus discriminating pupae, developing and newly-ecdysed adults, and foragers from each other. In parallel, the honeybee genome database was searched for predicted gene models using known amino acid sequences of insect enzymes catalyzing lipid desaturation (desaturases) or elongation (elongases) as queries in BLASTP analysis. The expression levels of six desaturase genes and ten elongase genes potentially involved in CHC biosynthesis were determined by reverse transcription and real time polymerase chain reaction (RT-qPCR) in the developing integument (cuticle and subjacent epidermis). Aiming to predict roles for these genes in CHC biosynthesis, the developmental profiles of CHCs and desaturase/elongase transcript levels were evaluated using Spearman correlation coefficient. This analysis pointed to differential roles for these gene products in the biosynthesis of certain CHC classes. Based on the assumption that homologous proteins may share a similar function, phylogenetic trees were reconstructed as an additional strategy to predict functions and evolutionary relationships of the honeybee desaturases and elongases. Together, these approaches highlighted the molecular complexity underlying the formation of the lesser known layer of the cuticular exoskeleton, the envelope.


Assuntos
Acetiltransferases/genética , Abelhas/genética , Epiderme/química , Ácidos Graxos Dessaturases/genética , Expressão Gênica , Hidrocarbonetos/metabolismo , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Genes de Insetos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA