Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(11): pgad346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954163

RESUMO

Deplatforming, or banning malicious accounts from social media, is a key tool for moderating online harms. However, the consequences of deplatforming for the wider social media ecosystem have been largely overlooked so far, due to the difficulty of tracking banned users. Here, we address this gap by studying the ban-induced platform migration from Twitter to Gettr. With a matched dataset of 15M Gettr posts and 12M Twitter tweets, we show that users active on both platforms post similar content as users active on Gettr but banned from Twitter, but the latter have higher retention and are 5 times more active. Our results suggest that increased Gettr use is not associated with a substantial increase in user toxicity over time. In fact, we reveal that matched users are more toxic on Twitter, where they can engage in abusive cross-ideological interactions, than Gettr. Our analysis shows that the matched cohort are ideologically aligned with the far-right, and that the ability to interact with political opponents may be part of Twitter's appeal to these users. Finally, we identify structural changes in the Gettr network preceding the 2023 Brasília insurrections, highlighting the risks that poorly regulated social media platforms may pose to democratic life.

2.
PLoS One ; 17(6): e0267166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737662

RESUMO

Micro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In this paper, we introduce a novel computational method which aims to identify which atrial regions are most susceptible to micro-reentry. The approach, which considers the structural basis for micro-reentry only, is based on the premise that the accumulation of electrically insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and have convex wall morphology, likely facilitating localised treatment via ablation. However, as transverse connections between fibres are removed, mimicking the accumulation of interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in thin, convex regions of the atria is reduced, possibly restricting the efficacy of localised ablation. Comparing our algorithm on image-based models with and without atrial fibre structure, we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate, whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry. With further development, these methods may be useful for modelling the temporal development of the fibrotic substrate on an individualised basis.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Fibrose , Átrios do Coração , Humanos
3.
Phys Rev Res ; 2(2): 023311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607500

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhytmia, characterized by the chaotic motion of electrical wavefronts in the atria. In clinical practice, AF is classified under two primary categories: paroxysmal AF, short intermittent episodes separated by periods of normal electrical activity; and persistent AF, longer uninterrupted episodes of chaotic electrical activity. However, the precise reasons why AF in a given patient is paroxysmal or persistent is poorly understood. Recently, we have introduced the percolation-based Christensen-Manani-Peters (CMP) model of AF which naturally exhibits both paroxysmal and persistent AF, but precisely how these differences emerge in the model is unclear. In this paper, we dissect the CMP model to identify the cause of these different AF classifications. Starting from a mean-field model where we describe AF as a simple birth-death process, we add layers of complexity to the model and show that persistent AF arises from reentrant circuits which exhibit an asymmetry in their probability of activation relative to deactivation. As a result, different simulations generated at identical model parameters can exhibit fibrillatory episodes spanning several orders of magnitude from a few seconds to months. These findings demonstrate that diverse, complex fibrillatory dynamics can emerge from very simple dynamics in models of AF.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33763495

RESUMO

Automated ECG classification is a standard feature in many commercial 12-Lead ECG machines. As part of the Physionet/CinC Challenge 2020, our team, "Mad-hardmax", developed an XGBoost based classification method for the analysis of 12-Lead ECGs acquired from four different countries. Our aim is to develop an interpretable classifier that outputs diagnoses which can be traced to specific ECG features, while also testing the potential of information theoretic features for ECG diagnosis. These measures capture high-level interdependencies across ECG leads which are effective for discriminating conditions with multiple complex morphologies. On unseen test data, our algorithm achieved a challenge score of 0.155 relative to a winning score of 0.533, putting our submission in 24th position from 41 successful entries.

5.
Proc Biol Sci ; 286(1899): 20190365, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30900535

RESUMO

Most animal traps are constructed from self-secreted silk, so antlions are rare among trap builders because they use only materials found in the environment. We show how antlions exploit the properties of the substrate to produce very effective structures in the minimum amount of time. Our modelling demonstrates how antlions: (i) exploit self-stratification in granular media differentially to expose deleterious large grains at the bottom of the construction trench where they can be ejected preferentially, and (ii) minimize completion time by spiral rather than central digging. Both phenomena are confirmed by our experiments. Spiral digging saves time because it enables the antlion to eject material initially from the periphery of the pit where it is less likely to topple back into the centre. As a result, antlions can produce their pits-lined almost exclusively with small slippery grains to maximize powerful avalanches and hence prey capture-much more quickly than if they simply dig at the pit's centre. Our demonstration, for the first time to our knowledge, of an animal using self-stratification in granular media exemplifies the sophistication of extended phenotypes even if they are only formed from material found in the animal's environment.


Assuntos
Insetos/fisiologia , Comportamento Predatório , Animais , Alemanha , Insetos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Modelos Biológicos
6.
Comput Cardiol (2010) ; 2019: 1-4, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514409

RESUMO

Re-entrant circuits have been identified as potential drivers of atrial fibrillation (AF). In this paper, we develop a novel computational framework for finding the locations of re-entrant circuits from high resolution fibre orientation data. The technique follows a statistical approach whereby we generate continuous fibre tracts across the tissue and couple adjacent fibres stochastically if they are within a given distance of each other. By varying the connection distance, we identify which regions are most susceptible to forming re-entrant circuits if muscle fibres are uncoupled, through the action of fibrosis or otherwise. Our results highlight the sleeves of the pulmonary veins, the posterior left atrium and the left atrial appendage as the regions most susceptible to re-entrant circuit formation. This is consistent with known risk locations in clinical AF. If the model can be personalised for individual patients undergoing ablation, future versions may be able to suggest suitable ablation targets.

7.
Phys Rev E ; 100(6-1): 062406, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962501

RESUMO

The mechanisms of atrial fibrillation (AF) are poorly understood, resulting in disappointing success rates of ablative treatment. Different mechanisms defined largely by different atrial activation patterns have been proposed and, arguably, this dispute has slowed the progress of AF research. Recent clinical evidence suggests a unifying mechanism of local drivers based on sustained reentrant circuits in the complex atrial architecture. Here, we present a percolation inspired computational model showing spontaneous emergence of AF that strongly supports, and gives a theoretical explanation for, the clinically observed diversity of activation. We show that the difference in surface activation patterns is a direct consequence of the thickness of the discrete network of heart muscle cells through which electrical signals percolate to reach the imaged surface. The model naturally follows the clinical spectrum of AF spanning sinus rhythm, paroxysmal AF, and persistent AF as the decoupling of myocardial cells results in the lattice approaching the percolation threshold. This allows the model to make the prediction that, for paroxysmal AF, reentrant circuits emerge near the endocardium, but in persistent AF they emerge deeper in the bulk of the atrial wall. If experimentally verified, this may go towards explaining the lowering ablation success rate as AF becomes more persistent.


Assuntos
Fibrilação Atrial/fisiopatologia , Fenômenos Eletrofisiológicos , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA