Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetics ; 217(1): 1-9, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683367

RESUMO

Domestic chickens are less fearful, have a faster sexual development, grow bigger, and lay more eggs than their primary ancestor, the red junglefowl. Several candidate genetic variants selected during domestication have been identified, but only a few studies have directly linked them with distinct phenotypic traits. Notably, a variant of the thyroid stimulating hormone receptor (TSHR) gene has been under strong positive selection over the past millennium, but it's function and mechanisms of action are still largely unresolved. We therefore assessed the abundance of the domestic TSHR variant and possible genomic selection signatures in an extensive data set comprising multiple commercial and village chicken populations as well as wild-living extant members of the genus Gallus. Furthermore, by mean of extensive backcrossing we introgressed the wild-type TSHR variant from red junglefowl into domestic White Leghorn chickens and investigated gene expression, hormone levels, cold adaptation, and behavior in chickens possessing either the wild-type or domestic TSHR variant. While the domestic TSHR was the most common variant in all studied domestic populations and in one of two red junglefowl population, it was not detected in the other Gallus species. Functionally, the individuals with the domestic TSHR variant had a lower expression of the TSHR in the hypothalamus and marginally higher in the thyroid gland than wild-type TSHR individuals. Expression of TSHB and DIO2, two regulators of sexual maturity and reproduction in birds, was higher in the pituitary gland of the domestic-variant chickens. Furthermore, the domestic variant was associated with higher activity in the open field test. Our findings confirm that the spread of the domestic TSHR variant is limited to domesticated chickens, and to a lesser extent, their wild counterpart, the red junglefowl. Furthermore, we showed that effects of genetic variability in TSHR mirror key differences in gene expression and behavior previously described between the red junglefowl and domestic chicken.


Assuntos
Proteínas Aviárias/genética , Comportamento Animal , Galinhas/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores da Tireotropina/genética , Seleção Artificial , Maturidade Sexual , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Domesticação , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Receptores da Tireotropina/metabolismo , Glândula Tireoide/metabolismo
2.
Nature ; 571(7766): 505-509, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243369

RESUMO

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Transcriptoma/genética , Animais , Evolução Biológica , Galinhas/genética , Feminino , Humanos , Macaca mulatta/genética , Masculino , Camundongos , Gambás/genética , Coelhos , Ratos
3.
Genetics ; 212(4): 1445-1452, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160321

RESUMO

Domestic animals are adapted to conditions vastly different from those of their wild ancestors, and this is particularly true for their diets. The most numerous of all domestic species, the chicken, originated from the Red Junglefowl (RJF), a native of subtropical forests in Southeast Asia. Surprisingly however, in domestic chicken breeds, a common haplotype of the ß-carotene oxygenase 2 (BCO2) gene, which is involved in carotenoid metabolism, is introgressed from a related species, the Gray Junglefowl, and has been under strong selective pressure during domestication. This suggests that a hybridization event may have conferred a fitness advantage on chickens carrying the derived allele. To investigate the possible biological function of the introgressed BCO2 allele in chicken, we introgressed the ancestral BCO2 allele into domestic White Leghorn chickens. We measured gene expression as well as carotenoid accumulation in skin and eggs of chickens carrying either the ancestral or the derived BCO2 allele. The derived haplotype was associated with down-regulation of BCO2 in skin, muscle, and adipose tissue, but not in liver or duodenum, indicating that carotenoid accumulation occurred in the tissues with reduced gene expression. Most importantly, we found that hens with the derived BCO2 genotype were capable of allocating stored carotenoids to their eggs, suggesting a functional benefit through buffering any shortage in the diet during egg production. Nevertheless, it is of interest that loss of function mutations in BCO2 gene are prevalent in other domesticates including cows, rabbits, and sheep, and, given the importance of carotenoids in development, reproduction, and immunity, it is possible that derived BCO2 alleles may provide a general mechanism in multiple domestic species to deal with higher demand for carotenoids in an environment with carotenoid shortage in the diet.


Assuntos
Alelos , Proteínas Aviárias/genética , Carotenoides/metabolismo , Galinhas/genética , Dioxigenases/genética , Aptidão Genética , Animais , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Dieta , Dioxigenases/metabolismo , Domesticação , Duodeno/metabolismo , Evolução Molecular , Hibridização Genética , Fígado/metabolismo , Músculo Esquelético/metabolismo
4.
Heredity (Edinb) ; 122(2): 195-204, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29789643

RESUMO

Domesticated animals share a unique set of morphological and behavioral traits, jointly referred to as the domesticated phenotype. Striking similarities amongst a range of unrelated domesticated species suggest that similar regulatory mechanisms may underlie the domesticated phenotype. These include color pattern, growth, reproduction, development and stress response. Although previous studies have focused on the brain to find mechanisms underlying domestication, the potential role of the pituitary gland as a target of domestication is highly overlooked. Here, we study gene expression in the pituitary gland of the domesticated White Leghorn chicken and its wild ancestor, the Red Junglefowl. By overlapping differentially expressed genes with a previously published list of functionally important genes in the pituitary gland, we narrowed down to 34 genes. Amongst them, expression levels of genes with inhibitory function on pigmentation (ASIP), main stimulators of metabolism and sexual maturity (TSHB and DIO2), and a potential inhibitor of broodiness (PRLR), were higher in the domesticated breed. Additionally, expression of 2 key inhibitors of the stress response (NR3C1, CRHR2) was higher in the domesticated breed. We suggest that changes in the transcription of important modulatory genes in the pituitary gland can account not only for domestication of the stress response in domestic chickens, but also for changes in pigmentation, development, and reproduction. Given the pivotal role of the pituitary gland in the regulation of multiple shared domesticated traits, we suggest that similar changes in pituitary transcriptome may contribute to the domesticated phenotype in other species as well.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Hipófise/metabolismo , Animais , Animais Domésticos/classificação , Animais Domésticos/genética , Animais Domésticos/crescimento & desenvolvimento , Animais Domésticos/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/classificação , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Domesticação , Feminino , Genótipo , Masculino , Fenótipo , Filogenia , Reprodução
5.
Genome Res ; 27(12): 1961-1973, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079676

RESUMO

Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not been globally assessed. We therefore produced an extensive small RNA sequencing data set to analyze male and female miRNA expression profiles in mouse, opossum, and chicken. Our analyses uncovered numerous cases of somatic sex-biased miRNA expression, with the largest proportion found in the mouse heart and liver. Sex-biased expression is explained by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system, expression output of genes on the Z Chromosome is expected to be male-biased, since there is no global dosage compensation mechanism that restores expression in ZW females after almost all genes on the W Chromosome decayed. Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner, due to the unusual retention of a W-linked copy. Another Z-linked miRNA, the male-biased miR-2954-3p, shows conserved preference for dosage-sensitive genes on the Z Chromosome, based on computational and experimental data from chicken and zebra finch, and acts to equalize male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish miRNA regulation as a novel gene-specific dosage compensation mechanism.


Assuntos
Galinhas/genética , Mecanismo Genético de Compensação de Dose/genética , MicroRNAs/genética , Monodelphis/genética , Caracteres Sexuais , Animais , Conjuntos de Dados como Assunto , Feminino , Tentilhões/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , MicroRNAs/biossíntese , Proteínas/genética , Sequências Reguladoras de Ácido Nucleico
6.
Neurobiol Stress ; 7: 113-121, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28879214

RESUMO

Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens. We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds.

7.
Gen Comp Endocrinol ; 228: 69-78, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26873630

RESUMO

The thyroid stimulating hormone receptor gene (TSHR) has been suggested to be a "domestication locus" in the chicken. A strong selective sweep over TSHR in domestic breeds together with significant effects of a mutation in the gene on several domestication related traits, indicate that the gene has been important for chicken domestication. TSHR plays a key role in the signal transduction of seasonal reproduction, which is characteristically less strict in domestic animals. We used birds from an advanced intercross line between ancestral Red Junglefowl (RJF) and domesticated White Leghorn (WL) to investigate effects of the mutation on reproductive traits as well as on TSHB, TSHR, DIO2 and DIO3 gene expression during altered day length (photoperiod). We bred chickens homozygous for either the mutation (d/d) or wild type allele (w/w), allowing assessment of the effect of genotype at this locus while also controlling for background variation in the rest of the genome. TSHR gene expression in brain was significantly lower in both d/d females and males and d/d females showed a faster onset of egg laying at sexual maturity than w/w. Furthermore, d/d males showed a reduced testicular size response to decreased day length, and lower levels of TSHB and DIO3 expression. Additionally, purebred White Leghorn females kept under natural short day length in Sweden during December had active ovaries and lower levels of TSHR and DIO3 expression compared to Red Junglefowl females kept under similar conditions. Our study indicates that the TSHR mutation affects photoperiodic response in chicken by reducing dependence of seasonal reproduction, a typical domestication feature, and may therefore have been important for chicken domestication.


Assuntos
Animais Domésticos/genética , Galinhas/genética , Regulação da Expressão Gênica , Mutação/genética , Fotoperíodo , Receptores da Tireotropina/genética , Reprodução/genética , Animais , Cruzamento , Feminino , Genótipo , Masculino
8.
PLoS One ; 9(8): e103218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111139

RESUMO

Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C) gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1-8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection of some unknown genetic element in the vicinity of the gene.


Assuntos
Galinhas/genética , Evolução Molecular , Receptores Adrenérgicos alfa 2/genética , Seleção Genética , Estresse Psicológico/genética , Alelos , Animais , Cromossomos/genética , Feminino , Fertilidade/genética , Genômica , Genótipo , Masculino , Mutação , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA