Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38854056

RESUMO

Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms. For example, stability of the only known insulin/IGF receptor in C. elegans, DAF-2/INSR, is regulated by CHIP-dependent ubiquitination. Disruption of chn-1/CHIP reduces longevity in C. elegans by increasing DAF-2/INSR abundance and IIS activity in adults. Likewise, mutation of a ubiquitination site causes daf-2(gk390525) to display gain-of-function phenotypes in adults. However, we show that this allele displays loss-of-function phenotypes in larvae, and that its effect on IIS activity transitions from negative to positive during development. In contrast, the allele acts like a gain-of-function in larvae cultured at high temperature, inhibiting temperature-dependent dauer formation. Disruption of chn-1/CHIP causes an increase in IIS activity in starved L1 larvae, unlike daf-2(gk390525). CHN-1/CHIP ubiquitinates DAF-2/INSR at multiple sites. These results suggest that the sites that are functionally relevant to negative regulation of IIS vary in larvae and adults, at different temperatures, and in nutrient-dependent fashion, revealing additional layers of IIS regulation.

2.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36449574

RESUMO

The Developmental Origins of Health and Disease hypothesis postulates that early-life stressors can predispose people to disease later in life. In the roundworm Caenorhabditis elegans, prolonged early-life starvation causes germline tumors, uterine masses, and other gonad abnormalities to develop in well-fed adults. Reduction of insulin/insulin-like growth factor (IGF) signaling (IIS) during larval development suppresses these starvation-induced abnormalities. However, molecular mechanisms at play in formation and suppression of starvation-induced abnormalities are unclear. Here we describe mechanisms through which early-life starvation and reduced IIS affect starvation-induced abnormalities. Transcriptome sequencing revealed that expression of genes in the Wnt signaling pathway is upregulated in adults starved as young larvae, and that knockdown of the insulin/IGF receptor daf-2/InsR decreases their expression. Reduction of Wnt signaling through RNAi or mutation reduced starvation-induced abnormalities, and hyperactivation of Wnt signaling produced gonad abnormalities in worms that had not been starved. Genetic and reporter-gene analyses suggest that Wnt signaling acts downstream of IIS in the soma to cell-nonautonomously promote germline hyperproliferation. In summary, this work reveals that IIS-dependent transcriptional regulation of Wnt signaling promotes starvation-induced gonad abnormalities, illuminating signaling mechanisms that contribute to adult pathology following early-life starvation.


Assuntos
Proteínas de Caenorhabditis elegans , Neoplasias , Somatomedinas , Inanição , Animais , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Via de Sinalização Wnt , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Somatomedinas/metabolismo , Inanição/genética , Células Germinativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA