Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611254

RESUMO

This study aims to enhance value addition to agricultural byproducts to produce composites by the solution casting technique. It is well known that PLA is moisture-sensitive and deforms at high temperatures, which limits its use in some applications. When blending with plant-based fibers, the weak point is the poor filler-matrix interface. For this reason, surface modification was carried out on hemp and flax fibers via acetylation and alkaline treatments. The fibers were milled to obtain two particle sizes of <75 µm and 149-210 µm and were blended with poly (lactic) acid at different loadings (0, 2.5%, 5%, 10%, 20%, and 30%) to form a composite film The films were characterized for their spectroscopy, physical, and mechanical properties. All the film specimens showed C-O/O-H groups and the π-π interaction in untreated flax fillers showed lignin phenolic rings in the films. It was noticed that the maximum degradation temperature occurred at 362.5 °C. The highest WVPs for untreated, alkali-treated, and acetylation-treated composites were 20 × 10-7 g·m/m2 Pa·s (PLA/hemp30), 7.0 × 10-7 g·m/m2 Pa·s (PLA/hemp30), and 22 × 10-7 g·m/m2 Pa·s (PLA/hemp30), respectively. Increasing the filler content caused an increase in the color difference of the composite film compared with that of the neat PLA. Alkali-treated PLA/flax composites showed significant improvement in their tensile strength, elongation at break, and Young's modulus at a 2.5 or 5% filler loading. An increase in the filler loadings caused a significant increase in the moisture absorbed, whereas the water contact angle decreased with an increasing filler concentration. Flax- and hemp-induced PLA-based composite films with 5 wt.% loadings showed a more stable compromise in all the examined properties and are expected to provide unique industrial applications with satisfactory performance.

2.
Int J Biol Macromol ; 257(Pt 1): 128478, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029915

RESUMO

Significant amounts of starch and protein are generated as co-products during fractionation of pulse seeds. While pulse proteins (PP) have garnered a lot of interest in numerous applications, little attention is shown to pulse starch (PS). The creation of novel materials such as bioplastics could revolutionize the use of pulse starches. In this study, we investigated the prospects of air-classified and isolated pea, lentil, and faba bean starches as a precursor for fabricating pulse starch bioaerogels (PSBs) via freeze-drying technique. The results evidenced ultra-low densities (<0.1 m2/g), mesopore sizes (2-50 µm), high porosities (∼99 %), low surface areas (SBET = âˆ¼4-18 m2/g) for all the aerogels. The adsorption isotherm showed typical Type II and III profiles, while the thermogravimetric analysis showed more weight loss (74.39-78.12 %) in aerogels mostly developed from isolated starches. Microstructural studies showed a unique distribution of pores within the developed aerogels. FTIR and XPS studies confirmed the presence of an amide (I, II, III) at different absorption bands range (∼1600-1200 cm-1) and functional groups (carboxylic group and the amide group), respectively. All the PSBs became stiffer with a corresponding increase in load, and a reversible deformation in the linear region was identified at <5 % strain. Comparatively, saturated PSBs from air-classified starch at a relative humidity of 95 % showed a drastic reduction in their compressive moduli (CM), while PSBs from isolated starch experienced markedly high CM. Moisture saturation was achieved at 72 h for all the samples. This study provides crucial information that could spark a keen interest in the use of non-conventional starch for the creation of novel and sustainable biobased products with expanded applications.


Assuntos
Sementes , Amido , Amido/química , Fenômenos Químicos , Sementes/química , Adsorção , Amidas/análise
3.
Int J Biol Macromol ; 258(Pt 1): 128834, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128804

RESUMO

The escalating demand for sustainable materials has propelled cellulose into the spotlight as a promising alternative to petroleum-based products. As the most abundant organic polymer on Earth, cellulose is ubiquitous, found in plants, bacteria, and even a unique marine animal-the tunicate. Cellulose polymers naturally give rise to microscale semi-crystalline fibers and nanoscale crystalline regions known as cellulose nanocrystals (CNCs). Exhibiting rod-like structures with widths spanning 3 to 50 nm and lengths ranging from 50 nm to several microns, CNC characteristics vary based on the cellulose source. The degree of crystallinity, crucial for CNC properties, fluctuates between 49 and 95 % depending on the source and synthesis method. CNCs, with their exceptional properties such as high aspect ratio, relatively low density (≈1.6 g cm-3), high axial elastic modulus (≈150 GPa), significant tensile strength, and birefringence, emerge as ideal candidates for biodegradable fillers in nanocomposites and functional materials. The percolation threshold, a mathematical concept defining long-range connectivity between filler and polymer, governs the effectiveness of reinforcement in nanocomposites. This threshold is intricately influenced by the aspect ratio and molecular interaction strength, impacting CNC performance in polymeric and pure nanocomposite materials. This comprehensive review explores diverse aspects of CNCs, encompassing their derivation from various sources, methods of modification (both physical and chemical), and hybridization with heterogeneous fillers. Special attention is devoted to the hybridization of CNCs derived from tunicates (TCNC) with those from wood (WCNC), leveraging the distinct advantages of each. The overarching objective is to demonstrate how this hybridization strategy mitigates the limitations of WCNC in composite materials, offering improved interaction and enhanced percolation. This, in turn, is anticipated to elevate the reinforcing effects and pave the way for the development of nanocomposites with tunable viscoelastic, physicochemical, and mechanical properties.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Polímeros/química , Nanopartículas/química , Nanocompostos/química
4.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683888

RESUMO

Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA