Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(5): e23022, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35187747

RESUMO

This study examined the effect of dihydroquercetin (DHQ), also knofigurewn as taxifolin, on rotenone-induced Parkinsonism in rats. Male Wistar rats were administered 1.5 mg/kg rotenone for 10 days and subsequently treated with 0.25-1.0 mg/kg DHQ for 3 days followed by the assessment of parkinsonian symptoms. Brain striatal redox stress and neurochemical dysfunction markers were assessed spectrophotometrically. Histopathological evaluation of the striatum was done by hematoxylin and eosin staining technique. The expression of genes involved in the activation of NF-κB signaling pathway (IL-1ß, TNF-α, NF-κB and IκKB), and the p53 gene in the striatum were determined by RT-qPCR. DHQ attenuated parkinsonian symptoms as well as striatal redox stress, neurochemical dysfunction, and histological alterations occasioned by rotenone toxicity. Importantly, DHQ significantly suppressed the rotenone-induced upregulation of IL-1ß, NF-κB, and IκKB expression (p < 0.05) in the striatum of parkinsonian rats. DHQ demonstrated notable neurotherapeutic potential against rotenone-induced Parkinsonism in rats by improving parkinsonian symptoms (bradykinesia, catalepsy, postural instability, impaired locomotor behavior, and tremor) and neurochemical dysfunctions via modulation of genes involved in the activation of the canonical pathway of NF-κB-mediated inflammation.


Assuntos
Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/análogos & derivados , Ratos , Ratos Wistar , Rotenona/toxicidade
2.
In Silico Pharmacol ; 9(1): 49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395160

RESUMO

COVID-19 is a novel disease caused by SARS-CoV-2 and has made a catastrophic impact on the global economy. As it is, there is no officially FDA approved drug to alleviate the negative impact of SARS-CoV-2 on human health. Numerous drug targets for neutralizing coronavirus infection have been identified, among them is 3-chymotrypsin-like-protease (3CLpro), a viral protease responsible for the viral replication is chosen for this study. This study aimed at finding novel inhibitors of SARS-CoV-2 3C-like protease from the natural library using computational approaches. A total of 69,000 compounds from natural product library were screened to match a minimum of 3 features from the five sites e-pharmacophore model. Compounds with fitness score of 1.00 and above were consequently filtered by executing molecular docking studies via Glide docking algorithm. Qikprop also predicted the compounds drug-likeness and pharmacokinetic features; besides, the QSAR model built from KPLS analysis with radial as binary fingerprint was used to predict the compounds inhibition properties against SARS-CoV-2 3C-like protease. Fifty ns molecular dynamics (MD) simulation was carried out using GROMACS software to understand the dynamics of binding. Nine (9) lead compounds from the natural products library were discovered; seven among them were found to be more potent than lopinavir based on energies of binding. STOCK1N-98687 with docking score of -9.295 kcal/mol had considerable predicted bioactivity (4.427 µM) against SARS-CoV-2 3C-like protease and satisfactory drug-like features than the experimental drug lopinavir. Post-docking analysis by MM-GBSA confirmed the stability of STOCK1N-98687 bound 3CLpro crystal structure. MD simulation of STOCKIN-98687 with 3CLpro at 50 ns showed high stability and low fluctuation of the complex. This study revealed compound STOCK1N-98687 as potential 3CLpro inhibitor; therefore, a wet experiment is worth exploring to confirm the therapeutic potential of STOCK1N-98687 as an antiviral agent.

3.
Curr Drug Discov Technol ; 18(5): e17092020186048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32957889

RESUMO

BACKGROUND: The recent outbreak of Coronavirus SARS-CoV-2 (Covid-19), which has rapidly spread around the world in about three months with tens of thousands of deaths recorded so far is a global concern. An urgent need for potential therapeutic intervention is of necessity. Mpro is an attractive druggable target for the development of anti-COVID-19 drug development. METHODS: Compounds previously characterized by Melissa officinalis were queried against the main protease of coronavirus SARS-CoV-2 using a computational approach. RESULTS: Melitric acid A and salvanolic acid A had higher affinity than lopinavir and ivermectin using both AutodockVina and XP docking algorithms. The computational approach was employed in the generation of the QSAR model using automated QSAR, and in the docking of ligands from Melissa officinalis with SARS-CoV-2 Mpro inhibitors. The best model obtained was KPLS_Radial_ 28 (R2 = 0.8548 and Q2=0.6474, which was used in predicting the bioactivity of the lead compounds. Molecular mechanics based MM-GBSA confirmed salvanolic acid A as the compound with the highest free energy and predicted bioactivity of 4.777; it interacted with His-41 of the catalytic dyad (Cys145-His41) of SARS-CoV-2 main protease (Mpro), as this may hinder the cutting of inactive viral protein into active ones capable of replication. CONCLUSION: Salvanolic acid A can be further evaluated as a potential Mpro inhibitor.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Melissa/química , SARS-CoV-2 , Antivirais/farmacologia , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Plantas Medicinais , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31940286

RESUMO

Background The physiological functions of the testis and spleen can be affected through several cellular and molecular mechanisms such as the generation of reactive oxygen species (ROS) that causes oxidative stress. This study aimed at investigating the protective effect of catechin, quercetin, and taxifolin in rotenone-induced testicular and splenetic toxicity. Methods Male Wistar rats were administered with 1.5 mg/kg rotenone (s.c.) for 10 days followed by post-treatment with catechin (5, 10, or 20 mg/kg), quercetin (5, 10, or 20 mg/kg), and taxifolin (0.25, 0.5, or 1.0 mg/kg) for 3 days (s.c.), followed by estimation of biochemical markers of oxidative stress, inflammatory activities, and tissue damage in testes and spleen. Results Exposure of rats to rotenone caused reduced body weight gain, increased organ weight, decreased glutathione level and activities of glutathione transferase and superoxide dismutase, enhanced lipid peroxidation, and increased activities of prooxidant/proinflammatory enzymes and lactate dehydrogenase, which were mitigated by post-treatment with flavonoids. In general, quercetin and taxifolin showed better activity than catechin. Conclusions Catechin, quercetin, and taxifolin ameliorated rotenone-induced weight disturbances and oxidative damage in rats, indicating their potential relevance in toxicant and pesticide-induced tissue injury.


Assuntos
Catequina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/análogos & derivados , Quercetina/farmacologia , Baço/fisiologia , Testículo/fisiologia , Aumento de Peso/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Masculino , Tamanho do Órgão/fisiologia , Substâncias Protetoras/farmacologia , Ratos , Rotenona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA