Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 168: 105543, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182751

RESUMO

Chemical investigation of the ethanol extract from the stems and roots of the medicinal plant Lavigeria macrocarpa led to the isolation and structure elucidation of three previously unreported 21-nordammarane-type saponins namely 6α,27-dihydroxy-3,20-dioxo-21-nordammar-24-(Z)-ene 27-O-[α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranoside] (1), 6α,27-dihydroxy-3-oxo-21-nordammar-24-(Z)-ene 27-O-ß-D-glucopyranoside (2), and 2α,3ß,6α,27-tetrahydroxy-21-nordammar-24-(Z)-ene 27-O-ß-D-glucopyranoside (3) trivially named lavigemacrocarposide A-C, along with eight known secondary metabolites. Acid hydrolysis of lavigemacrocarposide A yielded a new prosapogenin namely 6α,27-dihydroxy-3,20-dioxo-21-nordammar-24-(Z)-ene 27-O-ß-D-glucopyranoside (1a) and the previously unreported artefactual aglycones 1b and 1c. Their structures were elucidated by spectroscopic analyses including mass spectrometry, 1D and 2D NMR as well as chemical evidence. The EtOH extract, some isolated compounds as well as the prosapogenin (1a) and compounds 1b and 1c were evaluated for anti-inflammatory and cytotoxic activity. Icacine (5) exhibited a significant cytotoxicity against both HeLa and MCF-7 cell lines with an IC50 value of 0.78 µg/mL. All the tested compounds showed more that 50% inhibition of NO production, except for 1 and 2.


Assuntos
Antineoplásicos , Magnoliopsida , Saponinas , Humanos , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saponinas/farmacologia , Saponinas/química , Anti-Inflamatórios/farmacologia
2.
J Dairy Res ; : 1-5, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882931

RESUMO

The research described in this Research Communication addresses the hypothesis that intramammary infections with Streptococcus uberis (S. uberis) are associated with biofilm formation, which limits antibiotic efficacy. This retrospective study investigated biofilm expression and antimicrobial resistance (AMR) patterns of 172 S. uberis infections. Isolates were recovered from milk samples of subclinical, clinical, and intramammary infection cases on 30 commercial dairy herds. We determined the presence and intensity of biofilm expression of S. uberis isolates in vitro in three somatic cell count categories to recognise their AMR patterns. An automated minimum inhibitory concentration system with a commercially available panel of 23 antimicrobial agents evaluated AMR, while biofilm determination was conducted using a microplate method. The study established that all the S. uberis isolates assessed expressed biofilm with the following varying degrees of intensities: 30 (17.8%) strong, 59 (34.9%) medium and 80 (47.3%) weak biofilms. The newly registered UBAC mastitis vaccine containing biofilm adhesion components may, therefore, be a viable option for proactive mastitis management under field conditions. No differences were identified between biofilm intensity and the three somatic cell count groups. Most S. uberis isolates indicated a high-level sensitivity to the antimicrobial agents tested. Resistances were present in 8.7, 8.1 and 7.0% cases to rifampin, minocycline and tetracycline, respectively. Multidrug resistance was observed in 6.4%, emphasising AMR to antibiotics used in human medicine only. The low overall resistance suggests that farmers adhere to the prudent use of antimicrobials in the dairy industry.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36212949

RESUMO

The development of resistance of microorganisms to conventional antibiotics is a major global health concern; hence, there is an increasing interest in medicinal plants as a therapeutic option. This study aimed to evaluate the antibacterial, anti-biofilm, and anti-quorum activities of crude extracts prepared using various solvents of nine indigenous South African plants used locally for the treatment of diarrhoea. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method and the crystal violet assay was used to test the anti-biofilm activity of the extracts against a panel of bacteria. Anti-quorum sensing activity of the extracts was assessed via inhibition of violacein production in Chromobacterium violaceum ATCC 12472. Preliminary screening of extracts against E. coli ATCC 25922 revealed that the acetone extracts had significant activity, with MIC values ranging from 0.04 to 0.63 mg/mL. Further screening against a panel of bacterial pathogens showed that the acetone extract of Bauhinia bowkeri was the most active with MIC of 0.01 mg/mL against Salmonella enteritidis, followed by Searsia lancea with MIC of 0.03 mg/mL against Bacillus cereus. All the plant extracts prevented the attachment of biofilms by more than 50% against at least one of the tested bacteria. However, only the mature biofilm of B. cereus was susceptible to the extracts, with 98.22% eradication by Searsia pendulina extract. The minimum quorum sensing inhibitory concentration of the extracts ranged from 0.08 to 0.32 mg/mL with S. lancea having the most significant activity. The extract of S. lancea had the best violacein production inhibitory activity with IC50 value of 0.17 mg/mL. Overall, the results obtained indicate that acetone extracts of S. leptodictya, S. lancea, S. batophylla, S. pendulina, B. galpinii, and B. bowkeri possess antibacterial and anti-biofilm activities and can modulate quorum sensing through the inhibition of violacein production. Therefore, these results signify the potential of the selected plant extracts in treating diarrhoea through inhibition of bacterial growth, biofilm formation inhibition, and quorum sensing antagonism, supporting their medicinal use.

4.
J Ethnopharmacol ; 298: 115657, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007717

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lichens, a unique symbiotic association between an alga/cyanobacterium and a fungus, produce secondary metabolites that are a promising source of novel drug leads. The beauty and importance of lichens have not been adequately explored despite their manifold biological activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, analgesic, antipyretic and antiparasitic. AIM OF THE STUDY: The present review collates and discusses the available knowledge on secondary metabolites and biological activities of lichens (in vitro and in vivo). MATERIALS AND METHODS: Using relevant keywords (lichens, secondary metabolites, bioactivity, pharmacological activities), five electronic databases, namely ScienceDirect, PubMed, Google Scholar, Scopus and Recent Literature on Lichens, were searched for past and current scientific contributions up until May 2022. Literature focusing broadly on the bioactivity of lichens including their secondary metabolites were identified and summarized. RESULTS: A total of 50 review articles and 189 research articles were searched. Information related to antioxidant, antimicrobial, anti-inflammatory, anticancer and insecticidal activities of 90 lichen species (from 13 families) and 12 isolated metabolites are reported. Over 90% of the studies comprised in vitro investigations, such as bioassays evaluating radical scavenging properties, lipid peroxidation inhibition and reducing power, cytotoxicity and antimicrobial bioassays of lichen species and constituents. In vivo studies were scarce and available only in fish and rats. Most of the studies were done by research groups in Brazil, France, Serbia, India and Turkey. There were relatively few reports from Asia and Africa despite the ubiquitous nature of lichens and the high occurrence in these continents. CONCLUSION: Secondary metabolites from lichens are worthy of further investigation in terms of their potential therapeutic applicability, including better understanding of their mechanism(s) of action. This would be of great importance in the search for novel drugs.


Assuntos
Anti-Infecciosos , Líquens , Animais , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Etnofarmacologia , Ratos
5.
Plants (Basel) ; 11(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270066

RESUMO

Invasive plants' phytochemicals are important for their invasiveness, enabling them to spread in new environments. However, these chemicals could offer many pharmaceutical compounds or active ingredients for herbal preparations. This study provides the first LC-MS phytochemical screening of six invasive alien plant species (IAPS) in the Istria region (Croatia): Ailanthus altissima, Ambrosia artemisiifolia, Conyza canadensis, Dittrichia viscosa, Erigeron annuus, and Xanthium strumarium. The study aims to identify and quantify the phenolic content of their leaf extracts and assess their antimicrobial and cytotoxic potential. A total of 32 species-specific compounds were recorded. Neochlorogenic, chlorogenic, and 5-p-coumaroylquinic acids, quercetin-3-glucoside, and kaempferol hexoside were detected in all the tested IAPS. Hydroxycinnamic acid derivatives were the main components in all the tested IAPS, except in E. annuus, where flavanones dominated with a share of 70%. X. strumarium extract had the best activity against the tested bacteria, with an average MIC value of 0.11 mg/mL, while A. altissima and X. strumarium extracts had the best activity against the tested fungi, with an average MIC value of 0.21 mg/mL in both cases. All the plant extracts studied, except X. strumarium, were less cytotoxic than the positive control. The results provided additional information on the phytochemical properties of IAPS and their potential for use as antimicrobial agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA