Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 20(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323509

RESUMO

Seaweed endophytic (algicolous) fungi are talented producers of bioactive natural products. We have previously isolated two strains of the endophytic fungus, Pyrenochaetopsis sp. FVE-001 and FVE-087, from the thalli of the brown alga Fucus vesiculosus. Initial chemical studies yielded four new decalinoylspirotetramic acid derivatives with antimelanoma activity, namely pyrenosetins A-C (1-3) from Pyrenochaetopsis sp. strain FVE-001, and pyrenosetin D (4) from strain FVE-087. In this study, we applied a comparative metabolomics study employing HRMS/MS based feature-based molecular networking (FB MN) on both Pyrenochaetopsis strains. A higher chemical capacity in production of decalin derivatives was observed in Pyrenochaetopsis sp. FVE-087. Notably, several decalins showed different retention times despite the same MS data and MS/MS fragmentation pattern with the previously isolated pyrenosetins, indicating they may be their stereoisomers. FB MN-based targeted isolation studies coupled with antimelanoma activity testing on the strain FVE-087 afforded two new stereoisomers, pyrenosetins E (5) and F (6). Extensive NMR spectroscopy including DFT computational studies, HR-ESIMS, and Mosher's ester method were used in the structure elucidation of compounds 5 and 6. The 3'R,5'R stereochemistry determined for compound 6 was identical to that previously reported for pyrenosetin C (3), whose stereochemistry was revised as 3'S,5'R in this study. Pyrenosetin E (5) inhibited the growth of human malignant melanoma cells (A-375) with an IC50 value of 40.9 µM, while 6 was inactive. This study points out significant variations in the chemical repertoire of two closely related fungal strains and the versatility of FB MN in identification and targeted isolation of stereoisomers. It also confirms that the little-known fungal genus Pyrenochaetopsis is a prolific source of complex decalinoylspirotetramic acid derivatives.


Assuntos
Ascomicetos/metabolismo , Misturas Complexas/química , Endófitos/metabolismo , Fucus/microbiologia , Alga Marinha/microbiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Misturas Complexas/farmacologia , Humanos , Metabolômica , Estereoisomerismo
2.
Mar Drugs ; 18(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466545

RESUMO

The fungal genus Pyrenochaetopsis is commonly found in soil, terrestrial, and marine environments, however, has received little attention as a source of bioactive secondary metabolites so far. In a recent work, we reported the isolation and characterization of three new anticancer decalinoyltetramic acid derivatives, pyrenosetins A-C, from the Baltic Fucus vesiculosus-derived endophytic fungus Pyrenochaetopsis sp. FVE-001. Herein we report a new pentacyclic decalinoylspirotetramic acid derivative, pyrenosetin D (1), along with two known decalin derivatives wakodecalines A (2) and B (3) from another endophytic strain Pyrenochaetopsis FVE-087 isolated from the same seaweed and showed anticancer activity in initial screenings. The chemical structures of the purified compounds were elucidated by comprehensive analysis of HR-ESIMS, FT-IR, [a]D, 1D and 2D NMR data coupled with DFT calculations of NMR parameters and optical rotation. Compounds 1-3 were evaluated for their anticancer and toxic potentials against the human malignant melanoma cell line (A-375) and the non-cancerous keratinocyte cell line (HaCaT). Pyrenosetin D (1) showed toxicity towards both A-375 and HaCaT cells with IC50 values of 77.5 and 39.3 µM, respectively, while 2 and 3 were inactive. This is the third chemical study performed on the fungal genus Pyrenochaetopsis and the first report of a pentacyclic decalin ring system from the fungal genus Pyrenochaetopsis.


Assuntos
Antineoplásicos/farmacologia , Fucus/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
3.
Mar Drugs ; 18(1)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940767

RESUMO

Marine algae represent a prolific source of filamentous fungi for bioprospecting. In continuation of our search for new anticancer leads from fungi derived from the brown alga Fucus vesiculosus, an endophytic Pyrenochaetopsis sp. FVE-001 was selected for an in-depth chemical analysis. The crude fungal extract inhibited several cancer cell lines in vitro, and the highest anticancer activity was tracked to its CHCl3-soluble portion. A bioactivity-based molecular networking approach was applied to C18-SPE fractions of the CHCl3 subextract to predict the bioactivity scores of metabolites in the fractions and to aid targeted purification of anticancer metabolites. This approach led to a rapid isolation of three new decalinoylspirotetramic acid derivatives, pyrenosetins A-C (1-3) and the known decalin tetramic acid phomasetin (4). The structures of the compounds were elucidated by extensive NMR, HR-ESIMS, FT-IR spectroscopy, [α]D and Mosher's ester method. Compounds 1 and 2 showed high anticancer activity against malignant melanoma cell line A-375 (IC50 values 2.8 and 6.3 µM, respectively), in line with the bioactivity predictions. This is the first study focusing on secondary metabolites of a marine-derived Pyrenochaetopsis sp. and the second investigation performed on the member of the genus Pyrenochaetopsis.


Assuntos
Antineoplásicos/farmacologia , Ascomicetos/química , Bioensaio/métodos , Descoberta de Drogas/métodos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fucus/microbiologia , Humanos , Concentração Inibidora 50
4.
Mar Drugs ; 17(1)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669497

RESUMO

The fungi associated with marine algae are prolific sources of metabolites with high chemical diversity and bioactivity. In this study, we investigated culture-dependent fungal communities associated with the Baltic seaweed Fucus vesiculosus. Altogether, 55 epiphytic and endophytic fungi were isolated and identified. Twenty-six strains were selected for a small-scale One-Strain-Many-Compounds (OSMAC)-based fermentation in four media under solid and liquid culture regimes. In total, 208 fungal EtOAc extracts were tested for anticancer activity and general cytotoxicity. Ten most active strains (i.e., 80 extracts) were analyzed for their metabolome by molecular networking (MN), in-silico MS/MS fragmentation analysis (ISDB⁻UNPD), and manual dereplication. Thirty-six metabolites belonging to 25 chemical families were putatively annotated. The MN clearly distinguished the impact of culture conditions in chemical inventory and anticancer activity of the fungal extracts that was often associated with general toxicity. The bioactivity data were further mapped into MN to seek metabolites, exclusively expressed in the active extracts. This is the first report of cultivable fungi associated with the Baltic F. vesiculosus that combined an OSMAC and an integrated MN-based untargeted metabolomics approaches for efficient assessment and visualization of the impact of the culture conditions on chemical space and anticancer potential of the fungi.


Assuntos
Antineoplásicos/isolamento & purificação , Organismos Aquáticos/metabolismo , Endófitos/metabolismo , Fucus/microbiologia , Fungos/metabolismo , Antineoplásicos/farmacologia , Técnicas de Cultura Celular por Lotes/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Humanos , Concentração Inibidora 50 , Extração Líquido-Líquido/métodos , Metaboloma , Metabolômica/métodos , Alga Marinha/microbiologia , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA