Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 11(14): 2885-92, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25727484

RESUMO

The concentration-dependent enthalpies of mixing for water/sodium bis(2-ethylhexyl)-sulfosuccinate (AOT)/n-alkane microemulsions with different water contents ω0 and chain lengths n of n-alkane were determined by isothermal titration microcalorimetry (ITC) and flow-mixing microcalorimetry at 298.15 K and used to calculate the interaction enthalpies (-ΔH(C)) between the droplets. It was found that -ΔH(C) increased with ω0, and changed from negative to positive at about ω0 = 10. The investigation of the dependence of -ΔH(C) on n revealed that the values of -ΔH(C) were negative and had a minimum for ω0 = 5; while they were positive and had a maximum for ω0 = 15. These phenomena were discussed based on the competition of the overlapping contribution of the surfactant tails between two neighbouring droplets and the penetration contribution of the solvent molecules into the surfactant tails. These results indicated the important role of entropy in the stability of the microemulsion systems.

2.
Soft Matter ; 10(40): 7977-84, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25154518

RESUMO

In this paper, we investigated the dilution enthalpies of the droplets in water/AOT/oil microemulsions with oil being isooctane, decane, or cyclohexane by isothermal titration microcalorimetry (ITC). Combining with the results obtained from the study of the water/AOT/toluene system in our previous work, it was found that the enthalpy interactions between droplets for isooctane and decane systems were repulsive, while the enthalpy interactions were attractive for cyclohexane and toluene systems. The repulsive droplet interaction for the isooctane system was also confirmed by static light scattering. The solvents appear to play important roles in varying the droplet enthalpy interactions from positive to negative, and the entropy contribution seems to be dominant for the stability of these microemulsion droplet systems.

3.
Soft Matter ; 10(23): 4126-36, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24752291

RESUMO

The interactions between the anionic polymer ι-carrageenan (IC) and the cationic surfactants 1-dodecyl-3-methylimidazolium bromide (C12mimBr), dodecyltrimethylammonium bromide (DTAB) and ethyl-α,ω-bis(dodecyldimethylammonium)dibromide (12-2-12) have been studied by fluorimetry and isothermal titration calorimetry. Our experimental results showed that at a low surfactant concentration, the monomers adsorbed on the IC chains through the electrostatic attraction, followed by the formation of induced micelles on the IC chains through the hydrophobic interaction until the IC chains are saturated by surfactant molecules; after that the added surfactant formed free micelles in the solution. A pseudo-phase-equilibrium thermodynamic model was proposed to explain the experimental results and to understand the mechanisms of the interactions in these three systems. Moreover, the salt effect on the interactions was investigated and found that it changed the critical concentrations but not the interaction mechanism.

4.
J Phys Chem A ; 116(1): 158-65, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22168828

RESUMO

The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA