Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 371, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750445

RESUMO

BACKGROUND: To explore a method for screening and diagnosing neonatal congenital heart disease (CHD) applicable to grassroots level, evaluate the prevalence of CHD, and establish a hierarchical management system for CHD screening and treatment at the grassroots level. METHODS: A total of 24,253 newborns born in Tang County between January 2016 and December 2020 were consecutively enrolled and screened by trained primary physicians via the "twelve-section ultrasonic screening and diagnosis method" (referred to as the "twelve-section method"). Specialized staff from the CHD Screening and Diagnosis Center of Hebei Children's Hospital regularly visited the local area for definite diagnosis of CHD in newborns who screened positive. Newborns with CHD were managed according to the hierarchical management system. RESULTS: The centre confirmed that, except for 2 newborns with patent ductus arteriosus missed in the diagnosis of ventricular septal defect combined with severe pulmonary hypertension, newborns with other isolated or concomitant simple CHDs were identified at the grassroots level. The sensitivity, specificity and diagnostic coincidence rate of the twelve-section method for screening complex CHD were 92%, 99.6% and 84%, respectively. A total of 301 children with CHD were identified. The overall CHD prevalence was 12.4‰. According to the hierarchical management system, 113 patients with simple CHD recovered spontaneously during local follow-up, 48 patients continued local follow-up, 106 patients were referred to the centre for surgery (including 17 patients with severe CHD and 89 patients with progressive CHD), 1 patient died without surgery, and 8 patients were lost to follow-up. Eighteen patients with complex CHD were directly referred to the centre for surgery, 3 patients died without surgery, and 4 patients were lost to follow-up. Most patients who received early intervention achieved satisfactory results. The mortality rate of CHD was approximately 28.86 per 100,000 children. CONCLUSIONS: The "twelve-section method" is suitable for screening neonatal CHD at the grassroots level. The establishment of a hierarchical management system for CHD screening and treatment is conducive to the scientific management of CHD, which has important clinical and social significance for early detection, early intervention, reduction in mortality and improvement of the prognosis of complex and severe CHDs.


Assuntos
Cardiopatias Congênitas , Triagem Neonatal , Humanos , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/diagnóstico por imagem , Recém-Nascido , China/epidemiologia , Triagem Neonatal/métodos , Feminino , Masculino , Prevalência , Sensibilidade e Especificidade
2.
New Phytol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708492

RESUMO

In plant species, anthocyanin accumulation is specifically regulated by light signaling. Although the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) complex is known to control anthocyanin biosynthesis in response to light, the precise mechanism underlying this process remains largely unknown. Here, we report that Increase in BONSAI Methylation 1 (IBM1), a JmjC domain-containing histone demethylase, participates in the regulation of light-induced anthocyanin biosynthesis in Arabidopsis. The expression of IBM1 was induced by high light (HL) stress, and loss-of-function mutations in IBM1 led to accelerated anthocyanin accumulation under HL conditions. We further identified that IBM1 is directly associated with SPA1/3/4 chromatin in vivo to establish a hypomethylation status on H3K9 and DNA non-CG at these loci under HL, thereby releasing their expression. Genetic analysis showed that quadruple mutants of IBM1 and SPA1/3/4 resemble spa134 mutants. Overexpression of SPA1 in ibm1 mutants complements the mutant phenotype. Our results elucidate the significance and mechanism of IBM1 histone demethylase in the epigenetic regulation of anthocyanin biosynthesis in Arabidopsis under HL conditions.

3.
Diabetes ; 73(6): 909-925, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466834

RESUMO

HSP20 emerges as a novel regulator of autophagy in the heart. Nonetheless, the detailed function of HSP20 in the liver and its effect on autophagy remain unknown. Here, we observed that HSP20 expression is increased in liver tissues from mice and patients with metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease. Liver-specific downregulation of HSP20 mitigates hepatic steatosis and insulin resistance in obese mice, while upregulating HSP20 promotes lipid deposition and hepatocyte cell death. Mechanistically, liquid chromatography-tandem mass spectrometry revealed that HSP20 interacts with phosphorylated extracellular regulated protein kinase 2 (ERK2) and prevents its dephosphorylation by dual specificity phosphatase 6, leading to ERK2-mediated repression of autophagy and resulting in aggravated saturated fatty acid (SFA)-triggered hepatocyte death. Importantly, such adverse effects could be ameliorated by ERK inhibitor. Our data reveal a framework of how HSP20 increases susceptibility of SFA-induced liver injury through enhancing ERK2 phosphorylation, which represents a plausible therapeutic intervention to combat MASLD.


Assuntos
Autofagia , Proteínas de Choque Térmico HSP20 , Proteína Quinase 1 Ativada por Mitógeno , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Camundongos , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP20/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Fosforilação , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Resistência à Insulina/fisiologia
4.
Phytomedicine ; 128: 155417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518642

RESUMO

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Assuntos
Diosgenina , Diosgenina/análogos & derivados , NF-kappa B , Microambiente Tumoral , Diosgenina/farmacologia , Humanos , NF-kappa B/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos
6.
J Biomed Mater Res A ; 112(5): 781-792, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38204293

RESUMO

Tracheal stenosis is commonly caused by injury, resulting in inflammation and fibrosis. Inhibiting inflammation and promoting epithelization can reduce recurrence after initial successful treatment of tracheal stenosis. Steroids play an important role in tracheal stenosis management. This study in vitro evaluated effectiveness of a polydopaminated polycaprolactone stent coated with dexamethasone-eluting poly(lactic-co-glycolic) acid microparticles (µPLGA) for tracheal stenosis management. Polydopamination was characterized by Raman spectroscopy and promoted epithelialization while dexamethasone delivery reduced macrophage activity, assessed by individual cell area measurements and immunofluorescent staining for inducible nitric oxide synthase (iNOS). Dexamethasone release was quantified by high-performance liquid chromatography over 30 days. Activation-related increase in cell area and iNOS production by RAW 264.7 were both reduced significantly (p < .05) through dexamethasone release. Epithelial cell spreading was higher on polydopaminated polycaprolactone (PCL) than PCL-alone (p < .05). Force required for stent migration was measured by pullout tests of PCL-µPLGA stents from cadaveric rabbit and porcine tracheas (0.425 ± 0.068 N and 1.082 ± 0.064 N, respectively) were above forces estimated to occur during forced respiration. Biomechanical support provided by stents to prevent airway collapse was assessed by comparing compressive circumferential stiffness, and stiffness of the stent was about 1/10th of the rabbit trachea (0.156 ± 0.023 N/mm vs. 1.420 ± 0.194 N/mm, respectively). A dexamethasone-loaded PCL-µPLGA stent platform can deliver dexamethasone and exhibits sufficient mechanical properties to anchor within the trachea and polydopamination of PCL is conducive to epithelial layer formation. Therefore, a polydopaminated PCL-µPLGA stent is a promising candidate for in vivo evaluation for treatment of tracheal restenosis.


Assuntos
Poliésteres , Estenose Traqueal , Humanos , Animais , Coelhos , Suínos , Glicóis , Traqueia , Stents , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Inflamação
7.
Clin Oral Investig ; 28(1): 121, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280038

RESUMO

OBJECTIVE: We aimed to develop a tool for virtual orthodontic bracket removal based on deep learning algorithms for feature extraction from bonded teeth and to demonstrate its application in a bracket position assessment scenario. MATERIALS AND METHODS: Our segmentation network for virtual bracket removal was trained using dataset A, containing 978 bonded teeth, 20 original teeth, and 20 brackets generated by scanners. The accuracy and segmentation time of the network were tested by dataset B, which included an additional 118 bonded teeth without knowing the original tooth morphology. This tool was then applied for bracket position assessment. The clinical crown center, bracket center, and orientations of separated teeth and brackets were extracted for analyzing the linear distribution and angular deviation of bonded brackets. RESULTS: This tool performed virtual bracket removal in 2.9 ms per tooth with accuracies of 98.93% and 97.42% (P < 0.01) in datasets A and B, respectively. The tooth surface and bracket characteristics were extracted and used to evaluate the results of manually bonded brackets by 49 orthodontists. Personal preferences for bracket angulation and bracket distribution were displayed graphically and tabularly. CONCLUSIONS: The tool's efficiency and precision are satisfactory, and it can be operated without original tooth data. It can be used to display the bonding deviation in the bracket position assessment scenario. CLINICAL SIGNIFICANCE: With the aid of this tool, unnecessary bracket removal can be avoided when evaluating bracket positions and modifying treatment plans. It has the potential to produce retainers and orthodontic devices prior to tooth debonding.


Assuntos
Aprendizado Profundo , Colagem Dentária , Braquetes Ortodônticos , Colagem Dentária/métodos , Descolagem Dentária/métodos , Microscopia Eletrônica de Varredura
8.
Tree Physiol ; 44(3)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113530

RESUMO

The critical role of auxin on secondary vascular development in woody plants has been demonstrated. The concentration gradient of endogenous indole-3-acetic acid and the cellular and molecular pathways contributing to the auxin-directed vascular organization and wood growth have been uncovered in recent decades. However, our understanding of the roles and regulations of auxin influx in wood formation in trees remains limited. Here, we reported that a microRNA, miR7833, participates in the negative regulation of stem cambial cell division and secondary xylem development in Populus tomentosa. The miR7833 is mainly expressed in the vascular cambium during stem radical growth and specifically targets and represses two AUX/LAX family auxin influx carriers, AUX5 and AUX6, in poplar. We further revealed that poplar AUX6, the most abundant miR7833 target in the stem, is preferentially enriched in the developing xylem and is a positive regulator for cell division and differentiation events during wood formation. Moreover, inhibition of auxin influx carriers by 1-naphthoxyacetic acids abolished the regulatory effects of miR7833 and AUX6 on secondary xylem formation in poplar. Our results revealed the essential roles of the miR7833-AUX6 module in regulating cellular events in secondary xylem development and demonstrated an auxin influx-dependent mechanism for wood formation in poplar.


Assuntos
Populus , Madeira , Populus/genética , Xilema , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas
9.
J Neurooncol ; 165(3): 547-559, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095773

RESUMO

PURPOSE: This study aimed to assess the ability of [11C]methionine (MET) PET in distinguishing between tumor progression (TP) and treatment-related changes (TRCs) among different types of adult-type diffuse gliomas according to the 2021 World Health Organization classification and predict overall survival (OS). METHODS: We retrospectively selected 113 patients with adult-type diffuse gliomas with suspected TP who underwent MET PET imaging. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and metabolic tumor volume (MTV) were calculated. Diagnoses were verified by histopathology (n = 50) or by clinical/radiological follow-up (n = 63). The diagnostic performance of MET PET parameters was evaluated through receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculation. Survival analysis employed the Kaplan-Meier method and Cox proportional-hazards regression. RESULTS: TP and TRCs were diagnosed in 76 (67%) and 37 (33%) patients, respectively. ROC analysis revealed TBRmax had the best performance in differentiating TP from TRCs with a cut-off of 1.96 in IDH-mutant astrocytoma (AUC, 0.87; sensitivity, 93%; specificity 69%), 1.80 in IDH-mutant and 1p/19q-codeleted oligodendroglioma (AUC, 0.96; sensitivity, 100%; specificity, 89%), and 2.13 in IDH wild-type glioblastoma (AUC, 0.89; sensitivity, 89%; specificity, 78%), respectively. On multivariate analysis, higher TBRmean and MTV were significantly correlated with shorter OS in all IDH-mutant gliomas, as well as in IDH-mutant astrocytoma subgroup. CONCLUSION: This work confirms that MET PET has varying diagnostic performances in distinguishing TP from TRCs within three types of adult-type diffuse gliomas, and highlights its high diagnostic accuracy in IDH-mutant and 1p/19q-codeleted oligodendroglioma and potential prognostic value for IDH-mutant gliomas, particularly IDH-mutant astrocytoma.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Adulto , Humanos , Metionina , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Racemetionina , Tomografia por Emissão de Pósitrons , Isocitrato Desidrogenase/genética , Mutação
10.
World J Gastrointest Oncol ; 15(11): 1835-1851, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077642

RESUMO

Cancer seriously endangers human health. Gastrointestinal cancer is the most common and major malignant tumor, and its morbidity and mortality are gradually increasing. Although there are effective treatments such as radiotherapy and chemotherapy for gastrointestinal tumors, they are often accompanied by serious side effects. According to the traditional Chinese medicine and food homology theory, many materials are both food and medicine. Moreover, food is just as capable of preventing and treating diseases as medicine. Medicine and food homologous herbs not only have excellent pharmacological effects and activities but also have few side effects. As a typical medicinal herb with both medicinal and edible uses, some components of ginger have been shown to have good efficacy and safety against cancer. A mass of evidence has also shown that ginger has anti-tumor effects on digestive tract cancers (such as gastric cancer, colorectal cancer, liver cancer, laryngeal cancer, and pancreatic cancer) through a variety of pathways. The aim of this study is to investigate the mechanisms of action of the main components of ginger and their potential clinical applications in treating gastrointestinal tumors.

11.
World J Diabetes ; 14(11): 1672-1692, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077799

RESUMO

BACKGROUND: Diabetic nephropathy (DN) stands as the most prevalent chronic microvascular complication of diabetes mellitus. Approximately 50% of DN patients progress to end-stage renal disease, posing a substantial health burden. AIM: To employ network pharmacology and molecular docking methods to predict the mechanism by which glycyrrhetinic acid (GA) treats DN, subsequently validating these predictions through experimental means. METHODS: The study initially identified GA targets using Pharm Mapper and the TCMSP database. Targets relevant to DN were obtained from the Genecards, OMIM, and TTD databases. The Venny database facilitated the acquisition of intersecting targets between GA and DN. The String database was used to construct a protein interaction network, while DAVID database was used to conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis. Molecular docking experiments were performed using Autodock software with selected proteins. Experimental validation was conducted using renal proximal tubular cells (HK-2) as the study subjects. A hyperglycemic environment was simulated using glucose solution, and the effect of GA on cell viability was assessed through the cell counting kit-8 method. Flow cytometry was employed to detect cell cycle and apoptosis, and protein immunoblot (western blot) was used to measure the expression of proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and insulin resistance pathway, including insulin receptor (INSR), PI3K, p-PI3K, AKT, p-AKT, and glycogen synthase kinase-3 (GSK3). RESULTS: A total of 186 intersecting targets between GA and DN were identified, which were associated with 144 KEGG-related enrichment pathways, 375 GO biological process entries, 45 GO cellular component entries, and 112 GO cellular function entries. Molecular docking demonstrated strong binding of GA to mitogen-activated protein kinase (MAPK)-1, SRC, PIK3R1, HSP90AA1, CASPASE9, HARS, KRAS, and MAPK14. In vitro experiments revealed that GA inhibited HK-2 cell viability, induced cell cycle arrest at the G2/M phase, and reduced apoptosis with increasing drug concentration. Western blot analysis showed that GA differentially up-regulated GSK3 protein expression, up-regulated AKT/p-AKT expression, down-regulated INSR, AKT, p-AKT, PI3K, and p-PI3K protein expression, and reduced p-PI3K/PI3K levels under high glucose conditions. CONCLUSION: GA may protect renal intrinsic cells by modulating the PI3K/AKT signaling pathway, thereby inhibiting HK-2 cell viability, reducing HK-2 cell apoptosis, and inducing cell cycle arrest at the G0/G1 phase.

12.
J Adv Res ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806546

RESUMO

INTRODUCTION: Cardiac hypertrophy is an important contributor of heart failure, and the mechanisms remain unclear. Leucine zipper protein 1 (LUZP1) is essential for the development and function of cardiovascular system; however, its role in cardiac hypertrophy is elusive. OBJECTIVES: This study aims to investigate the molecular basis of LUZP1 in cardiac hypertrophy and to provide a rational therapeutic approach. METHODS: Cardiac-specific Luzp1 knockout (cKO) and transgenic mice were established, and transverse aortic constriction (TAC) was used to induce pressure overload-induced cardiac hypertrophy. The possible molecular basis of LUZP1 in regulating cardiac hypertrophy was determined by transcriptome analysis. Neonatal rat cardiomyocytes were cultured to elucidate the role and mechanism of LUZP1 in vitro. RESULTS: LUZP1 expression was progressively increased in hypertrophic hearts after TAC surgery. Gain- and loss-of-function methods revealed that cardiac-specific LUZP1 deficiency aggravated, while cardiac-specific LUZP1 overexpression attenuated pressure overload-elicited hypertrophic growth and cardiac dysfunction in vivo and in vitro. Mechanistically, the transcriptome data identified Stat3 pathway as a key downstream target of LUZP1 in regulating pathological cardiac hypertrophy. Cardiac-specific Stat3 deletion abolished the pro-hypertrophic role in LUZP1 cKO mice after TAC surgery. Further findings suggested that LUZP1 elevated the expression of Src homology region 2 domain-containing phosphatase 1 (SHP1) to inactivate Stat3 pathway, and SHP1 silence blocked the anti-hypertrophic effects of LUZP1 in vivo and in vitro. CONCLUSION: We demonstrate that LUZP1 attenuates pressure overload-induced cardiac hypertrophy through inhibiting Stat3 signaling, and targeting LUZP1 may develop novel approaches to treat pathological cardiac hypertrophy.

13.
Zhongguo Zhen Jiu ; 43(10): 1180-3, 2023 Oct 12.
Artigo em Chinês | MEDLINE | ID: mdl-37802526

RESUMO

Ashi points play a significant role in the clinical localization and qualitative diagnosis of acupuncture, as well as in selecting acupoints along the meridians and applying tonifying or reducing techniques. This paper introduces the theoretical basis and existing technical methods of objectification of ashi point diagnosis and treatment. It proposes that using sensory quantitative testing to determine the temperature and tenderness thresholds of ashi points could help to identify the pathological characteristics of "cold" "heat" "deficiency" or "excess" of ashi points. In addition, the possibility of objectification of ashi point diagnosis-treatment plan is explored from three perspectives, precision of selection of ashi point therapy, objectification of effect evaluation of ashi point analgesia, and differentiation of the studies on ashi point analgesic mechanism, aiming to provide new research ideas for the modernization of traditional Chinese acupuncture.


Assuntos
Terapia por Acupuntura , Acupuntura , Analgesia , Meridianos , Pontos de Acupuntura
14.
J Transl Med ; 21(1): 655, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814261

RESUMO

BACKGROUND: Despite the improvements in treatment over the last decades, periodontal disease (PD) affects millions of people around the world and the only treatment available is based on controlling microbial load. Diabetes is known to increase the risk of PD establishment and progression, and recently, glucose metabolism modulation by pharmaceutical or dietarian means has been emphasised as a significant modulator of non-communicable disease development. METHODS: The impact of pharmaceutically controlling glucose metabolism in non-diabetic animals and humans (REBEC, UTN code: U1111-1276-1942) was investigated by repurposing Metformin, as a mean to manage periodontal disease and its associated systemic risk factors. RESULTS: We found that glucose metabolism control via use of Metformin aimed at PD management resulted in significant prevention of bone loss during induced periodontal disease and age-related bone loss in vivo. Metformin also influenced the bacterial species present in the oral environment and impacted the metabolic epithelial and stromal responses to bacterial dysbiosis at a single cell level. Systemically, Metformin controlled blood glucose levels and age-related weight gain when used long-term. Translationally, our pilot randomized control trial indicated that systemic Metformin was safe to use in non-diabetic patients and affected the periodontal tissues. During the medication window, patients showed stable levels of systemic blood glucose, lower circulating hsCRP and lower insulin levels after periodontal treatment when compared to placebo. Finally, patients treated with Metformin had improved periodontal parameters when compared to placebo treated patients. CONCLUSION: This is the first study to demonstrate that systemic interventions using Metformin in non-diabetic individuals aimed at PD prevention have oral-systemic effects constituting a possible novel form of preventive medicine for oral-systemic disease management.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Doenças Periodontais , Animais , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia , Doenças Periodontais/tratamento farmacológico , Gerenciamento Clínico
15.
Curr Med Sci ; 43(6): 1206-1212, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755635

RESUMO

OBJECTIVE: There is a large population of patients classified as complex higher-risk and indicated patients (CHIPs) in China with a poor prognosis. The treatment of these patients is complex and challenging, especially when acute cardiac events occur, such as acute coronary syndrome (ACS) or heart failure. Pharmacotherapy and some mechanical circulatory support (MCS) therapeutic devices can provide stable hemodynamic support for CHIPs-percutaneous coronary intervention (PCI). LDL-C is an important pathogenic factor in atherosclerosis, and the target of blood lipid control. Recent studies have revealed that lipoprotein(a) [Lp(a)], which is formed when a covalent bond between apolipoprotein(a) and apolipoprotein B-100 is made, produces an LDL-like particle. This particle is an independent risk factor for the development of atherosclerosis, and is closely correlated to stent thrombosis and restenosis. Furthermore, this requires active intervention. PCSK9 inhibitors have been used in lipid-lowering treatment, and preventing atherosclerosis. The present study explores the efficacy of PCSK9 inhibitors in CHIPs-ACS, and the association between the change in Lp(a) and survival after 2 years of follow-up. METHODS: The present real-world, prospective control study enrolled 321 CHIPs-ACS who underwent emergency PCI from August 2019 to November 2020, and these patients were followed up for 2 years. These patients were divided into two groups: PCSK9 group (n=161) given the combined PCSK9 inhibitor (140 mg of evolocumab every 2 weeks) and statins-based therapy, and SOC group (n=160) treated with statin-based lipid-lowering therapy alone. Then, the change in lipid index was measured, and the cardiovascular (CV) event recurrence rate was evaluated after one month and 2 years. Afterwards, the contribution of serum lipid parameters, especially the Lp(a) alteration, in patients with earlier initiation of the PCSK9 inhibitor to the CV outcome was analyzed. RESULTS: The LDL-C level was significantly reduced in both groups: 52.3% in the PCSK9 group and 32.3% (P<0.001) in the SOC group. It is noteworthy that the Lp(a) level decreased by 13.2% in the PCSK9 group, but increased by 30.3% in the SOC group (P<0.001). Furthermore, the number of CV events was not significantly different between the PCSK9 and SOC groups after the 2-year follow-up period. In the PCSK9 group, the Lp(a) reduction was associated with the baseline Lp(a) levels of the patients (r2 =-0.315, P<0.001). Moreover, the decrease in Lp(a) contributed to the decline in CV events in patients who received ACS CHIPs-PCI, and the decrease in Lp(a) level was independent of the LDL-C level reduction. CONCLUSION: The early initiation of PCSK9 inhibitors can significantly reduce the LDL-C and Lp(a) levels in ACS CHIPs-PCI. However, further studies are needed to confirm whether PCSK9 inhibitors can reduce the incidence of CV disease in CHIPs.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Intervenção Coronária Percutânea , Humanos , Pró-Proteína Convertase 9 , Lipoproteína(a) , LDL-Colesterol , Inibidores de PCSK9 , Estudos Prospectivos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Aterosclerose/tratamento farmacológico , Lipídeos , Síndrome Coronariana Aguda/tratamento farmacológico
16.
Nat Commun ; 14(1): 4967, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587150

RESUMO

Cardiac fibrosis is a common feature of chronic heart failure. Iroquois homeobox (IRX) family of transcription factors plays important roles in heart development; however, the role of IRX2 in cardiac fibrosis has not been clarified. Here we report that IRX2 expression is significantly upregulated in the fibrotic hearts. Increased IRX2 expression is mainly derived from cardiac fibroblast (CF) during the angiotensin II (Ang II)-induced fibrotic response. Using two CF-specific Irx2-knockout mouse models, we show that deletion of Irx2 in CFs protect against pathological fibrotic remodelling and improve cardiac function in male mice. In contrast, Irx2 gain of function in CFs exaggerate fibrotic remodelling. Mechanistically, we find that IRX2 directly binds to the promoter of the early growth response factor 1 (EGR1) and subsequently initiates the transcription of several fibrosis-related genes. Our study provides evidence that IRX2 regulates the EGR1 pathway upon Ang II stimulation and drives cardiac fibrosis.


Assuntos
Insuficiência Cardíaca , Proteínas de Homeodomínio , Hormônios Peptídicos , Fatores de Transcrição , Animais , Masculino , Camundongos , Angiotensina II , Fibroblastos , Coração , Camundongos Knockout
17.
World J Gastroenterol ; 29(29): 4542-4556, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37621755

RESUMO

BACKGROUND: Gastric carcinoma (GC) is the third most frequent cause of cancer-related death, highlighting the pressing need for novel clinical treatment options. In this regard, microRNAs (miRNAs) have emerged as a promising therapeutic strategy. Studies have shown that miRNAs can regulate related signaling pathways, acting as tumor suppressors or tumor promoters. AIM: To explore the effect of miR-204-3p on GC cells. METHODS: We measured the expression levels of miR-204-3p in GC cells using quantitative real-time polymerase chain reaction, followed by the delivery of miR-204-3p overexpression and miR-204-3p knockdown vectors into GC cells. CCK-8 was used to detect the effect of miR-204-3p on the proliferation of GC cells, and the colony formation ability of GC cells was detected by the clonal formation assay. The effects of miR-204-3p on GC cell cycle and apoptosis were detected by flow cytometry. The BABL/c nude mouse subcutaneous tumor model using MKN-45 cells was constructed to verify the effect of miR-204-3p on the tumorigenicity of GC cells. Furthermore, the study investigated the effects of miR-204-3p on various proteins related to the MAPK signaling pathway, necroptosis signaling pathway and apoptosis signaling pathway on GC cells using Western blot techniques. RESULTS: Firstly, we found that the expression of miR-204-3p in GC was low. When treated with the lentivirus overexpression vector, miR-204-3p expression significantly increased, but the lentivirus knockout vector had no significant effect on miR-204-3p. In vitro experiments confirmed that miR-204-3p overexpression inhibited GC cell viability, promoted cell apoptosis, blocked the cell cycle, and inhibited colony formation ability. In vivo animal experiments confirmed that miR-204-3p overexpression inhibited subcutaneous tumorigenesis ability in BABL/c nude mice. Simultaneously, our results verified that miR-204-3p overexpression can inhibit GC cell proliferation by inhibiting protein expression levels of KRAS and p-ERK1/2 in the MAPK pathway, as well as inhibiting protein expression levels of p-RIP1 and p-MLK1 in the necroptosis pathway to promote the BCL-2/BAX/Caspase-3 apoptosis pathway. CONCLUSION: MiR-204-3p overexpression inhibited GC cell proliferation by inhibiting the MAPK pathway and necroptosis pathway to promote apoptosis of GC cells. Thus, miR-204-3p may represent a new potential therapeutic target for GC.


Assuntos
MicroRNAs , Necroptose , Transdução de Sinais , Neoplasias Gástricas , Animais , Camundongos , Apoptose , Carcinoma/patologia , Divisão Celular , Modelos Animais de Doenças , Camundongos Nus , MicroRNAs/genética , Neoplasias Gástricas/patologia
18.
Front Plant Sci ; 14: 1176648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404529

RESUMO

Introduction: The endosphere of a plant is an interface containing a thriving community of endobacteria that can affect plant growth and potential for bioremediation. Eichhornia crassipes is an aquatic macrophyte, adapted to estuarine and freshwater ecosystems, which harbors a diverse bacterial community. Despite this, we currently lack a predictive understanding of how E. crassipes taxonomically structure the endobacterial community assemblies across distinct habitats (root, stem, and leaf). Methods: In the present study, we assessed the endophytic bacteriome from different compartments using 16S rRNA gene sequencing analysis and verified the in vitro plant beneficial potential of isolated bacterial endophytes of E. crassipes. Results and discussion: Plant compartments displayed a significant impact on the endobacterial community structures. Stem and leaf tissues were more selective, and the community exhibited a lower richness and diversity than root tissue. The taxonomic analysis of operational taxonomic units (OTUs) showed that the major phyla belonged to Proteobacteria and Actinobacteriota (> 80% in total). The most abundant genera in the sampled endosphere was Delftia in both stem and leaf samples. Members of the family Rhizobiaceae, such as in both stem and leaf samples. Members of the family Rhizobiaceae, such as Allorhizobium- Neorhizobium-Pararhizobium-Rhizobium were mainly associated with leaf tissue, whereas the genera Nannocystis and Nitrospira from the families Nannocystaceae and Nitrospiraceae, respectively, were statistically significantly associated with root tissue. Piscinibacter and Steroidobacter were putative keystone taxa of stem tissue. Most of the endophytic bacteria isolated from E. crassipes showed in vitro plant beneficial effects known to stimulate plant growth and induce plant resistance to stresses. This study provides new insights into the distribution and interaction of endobacteria across different compartments of E. crassipes Future study of endobacterial communities, using both culture-dependent and -independent techniques, will explore the mechanisms underlying the wide-spread adaptability of E. crassipesto various ecosystems and contribute to the development of efficient bacterial consortia for bioremediation and plant growth promotion.

19.
ACS Appl Mater Interfaces ; 15(31): 37986-37996, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491732

RESUMO

Biopolymer coatings on implants mediate the interactions between the synthetic material and its biological environment. Owing to its ease of preparation and the possibility to incorporate other bioactive molecules, layer-by-layer deposition is a method commonly used in the construction of biopolymer multilayers. However, this method typically requires at least two types of oppositely charged biopolymers, thus limiting the range of macromolecular options by excluding uncharged biopolymers. Here, we present a layer-by-layer approach that employs mussel-inspired polydopamine as the adhesive intermediate layer to build biopolymer multilayer coatings without requiring any additional chemical modifications. We select three biopolymers with different charge states─anionic alginate, neutral dextran, and cationic polylysine─and successfully assemble them into mono-, double-, or triple-layers. Our results demonstrate that both the layer number and the polymer type modulate the coating properties. Overall, increasing the number of layers in the coatings leads to reduced cell attachment, lower friction, and higher drug loading capacity but does not alter the surface potential. Moreover, varying the biopolymer type affects the surface potential, macrophage differentiation, lubrication performance, and drug release behavior. This proof-of-concept study offers a straightforward and universal coating method, which may broaden the use of multilayer coatings in biomedical applications.


Assuntos
Quitosana , Dopamina , Liberação Controlada de Fármacos , Lubrificação , Quitosana/química , Biopolímeros/química
20.
Macromol Biosci ; 23(11): e2300198, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466113

RESUMO

With its potential to revolutionize the field of personalized medicine by producing customized medical devices and constructs for tissue engineering at low costs, 3D printing has emerged as a highly promising technology. Recent advancements have sparked increasing interest in the printing of biopolymeric hydrogels. However, owing to the limited printability of those soft materials, the lack of variability in available bio-inks remains a major challenge. In this study, a novel bio-ink is developed based on functionalized mucin-a glycoprotein that exhibits a multitude of biomedically interesting properties such as immunomodulating activity and strong anti-biofouling behavior. To achieve sufficient printability of the mucin-based ink, its rheological properties are tuned by incorporating Laponite XLG as a stabilizing agent. It is shown that cured objects generated from this novel bio-ink exhibit mechanical properties partially similar to that of soft tissue, show strong anti-biofouling properties, good biocompatibility, tunable cell adhesion, and immunomodulating behavior. The presented findings suggest that this 3D printable bio-ink has a great potential for a wide range of biomedical applications, including tissue engineering, wound healing, and soft robotics.


Assuntos
Bioimpressão , Tinta , Mucinas , Engenharia Tecidual , Impressão Tridimensional , Reologia , Hidrogéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA