Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 121: 111252, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852936

RESUMO

BACKGROUND AND AIMS: S1P is an important factor regulating the function of the vascular endothelial barrier. SphK1 is an important limiting enzyme for the synthesis of S1P. However, the role of the SphK1/S1P-mediated vascular endothelial barrier function in atherosclerosis has not been fully revealed. This study explored the roles and mechanisms of SphK1 on atherosclerosis in vivo and in vitro. METHODS: In vivo, ApoE-/- and SphK1-/-ApoE-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, ox-LDL induced HUVECs to establish a cell model. Aortic histological changes were measured by H&E staining, Oil Red O staining, EVG staining, Sirius scarlet staining, immunofluorescence, and Evans Blue Assay. Western blotting was performed to explore the specific mechanism. RESULTS: We validated that deficiency of SphK1 resulted in a marked amelioration of atherosclerosis, as indicated by the decreased lipid accumulation, inflammatory factors, oxidative stress, aortic plaque area, inflammatory factor infiltration, VCAM-1 expression, and vascular endothelial permeability. Moreover, deficiency of SphK1 downregulated the expression of aortic S1PR3, Rhoa, ROCK, and F-actin. The results of administration with the SphK1 inhibitor PF-543 and the S1PR3 inhibitor VPC23019 in vitro further confirmed the conclusion that deficiency of SphK1 reduced S1P level and S1PR3 protein expression, inhibited Rhoa/ROCK signaling pathway, regulated protein expression of F-actin, improved vascular endothelial dysfunction and permeability, and exerted anti-atherosclerotic effects. CONCLUSIONS: This study revealed that deficiency of SphK1 relieved vascular endothelial barrier function in atherosclerosis mice via SphK1/S1P/S1PR signaling pathway.

2.
Biomed Pharmacother ; 169: 115838, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37944444

RESUMO

There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.


Assuntos
Osteoporose , Transdução de Sinais , Humanos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA