Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 71: 103066, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38833776

RESUMO

In forensic practice, mixture stains containing various body fluids are common, presenting challenges for interpretation, particularly in multi-contributor mixtures. Traditional STR profiles face difficulties in such scenarios. Over recent years, RNA has emerged as a promising biomarker for body fluid identification, and mRNA polymorphism has shown excellent performance in identifying body fluid donors in previous studies. In this study, a massively parallel sequencing assay was developed, encompassing 202 coding region SNPs (cSNPs) from 45 body fluid/tissue-specific genes to identify both body fluid/tissue origin and the respective donors, including blood, saliva, semen, vaginal secretion, menstrual blood, and skin. The specificity was evaluated by examining the single-source body fluids/tissue and revealed that the same body fluid exhibited similar expression profiles and the tissue origin could be identified. For laboratory-generated mixtures containing 2-6 different components and mock case mixtures, the donor of each component could be successfully identified, except for the skin donor. The discriminatory power for all body fluids ranged from 0.997176329 (menstrual blood) to 0.99999999827 (blood). The concordance of DNA typing and mRNA typing for the cSNPs in this system was also validated. This cSNP typing system exhibits excellent performance in mixture deconvolution.

2.
Ann Med Surg (Lond) ; 86(6): 3349-3356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846847

RESUMO

IL-4, an immunoregulatory cytokine, plays a role in various cellular pathways and is known to regulate M2 macrophage polarization. Numerous studies have suggested that promoting the polarization of macrophages toward the M2 phenotype is beneficial for myocardial infarction (MI) recovery. However, whether IL-4 can achieve therapeutic effects in MI by regulating M2 macrophage polarization remains unclear. In this study, the authors observed that IL-4 increased the proportion of M2 macrophages in the ischemic myocardium compared to the PBS group. Additionally, IL-4 reduced the infiltration of inflammatory cells and the expression of proinflammatory-related proteins, while enhancing the expression of genes associated with tissue repair. Furthermore, IL-4 facilitated the recovery of cardiac function and reduced fibrosis in the post-MI phase. Importantly, when macrophages were depleted, the therapeutic benefits of IL-4 mentioned above were attenuated. These findings provide evidence for the effectiveness of IL-4 in treating MI through the regulation of M2 macrophage polarization, thereby encouraging further development of this therapeutic approach.

3.
Nat Commun ; 15(1): 4303, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773073

RESUMO

Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI- anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm-2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.

4.
Chem Sci ; 15(12): 4238-4274, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516064

RESUMO

In response to societal developments and the growing demand for high-energy-density battery systems, alkali metal batteries (AMBs) have emerged as promising candidates for next-generation energy storage. Despite their high theoretical specific capacity and output voltage, AMBs face critical challenges related to high reactivity with electrolytes and unstable interphases. This review, from the perspective of electrolytes, analyzes AMB failure mechanisms, including interfacial side reactions, active materials loss, and metal dendrite growth. It then reviews recent advances in innovative electrolyte molecular designs, such as ether, ester, sulfone, sulfonamide, phosphate, and salt, aimed at overcoming the above-mentioned challenges. Finally, we propose the current molecular design principles and future promising directions that can help future precise electrolyte molecular design.

5.
Nat Commun ; 15(1): 2033, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448427

RESUMO

Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.

6.
Front Med (Lausanne) ; 11: 1335758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384414

RESUMO

Objective: This study aimed to identify clinical characteristics associated with the prevalence of progressive pulmonary fibrosis (PPF) in interstitial lung disease (ILD) and to develop a prognostic nomogram model for clinical use. Methods: In this single-centered, retrospective study, we enrolled ILD patients with relatively comprehensive clinical data and assessed the incidence of PPF within a year using collected demographics, laboratory data, high-resolution computed tomography (HRCT), and pulmonary function test (PFT) results. We used a training cohort of ILD patients to identify early predictors of PPF and then validated them in an internal validation cohort and subsets of ILD patients using a multivariable logistic regression analysis. A prognostic nomogram was formulated based on these predictors, and the accuracy and efficiency were evaluated using the area under the receiver operating characteristic curve (AUC), calibration plot, and decision curve analysis (DCA). Results: Among the enrolled patients, 120 (39.09%) cases had connective tissue disease-associated interstitial lung disease (CTD-ILD), 115 (37.46%) had non-idiopathic pulmonary fibrosis idiopathic interstitial pneumonia (non-IPF IIP), and 35 (11.4%) had hypersensitivity pneumonitis (HP). Overall, 118 (38.4%) cases experienced pulmonary fibrosis progression. We found that baseline DLco% pred (OR 0.92; 95% CI, 8.93-0.95) was a protective factor for ILD progression, whereas combined pneumonia (OR 4.57; 95% CI, 1.24-18.43), modified Medical Research Council dyspnea score (mMRC) (OR 4.9; 95% CI, 2.8-9.5), and high-resolution computed tomography (HRCT) score (OR 1.22; 95% CI, 1.07-1.42) were independent risk factors for PPF. The AUC of the proposed nomogram in the development cohort was 0.96 (95% CI, 0.94, 0.98), and the calibration plot showed good agreement between the predicted and observed incidence of PPF (Hosmer-Lemeshow test: P = 0.86). Conclusion: ILD patients with combined pneumonia, low baseline DLco% pred, high mMRC marks, and high HRCT scores were at higher risk of progression. This nomogram demonstrated good discrimination and calibration, indicating its potential utility for clinical practice.

7.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38400323

RESUMO

In the era of continuous development in Internet of Things (IoT) technology, smart services are penetrating various facets of societal life, leading to a growing demand for interconnected devices. Many contemporary devices are no longer mere data producers but also consumers of data. As a result, massive amounts of data are transmitted to the cloud, but the latency generated in edge-to-cloud communication is unacceptable for many tasks. In response to this, this paper introduces a novel contribution-a layered computing network built on the principles of fog computing, accompanied by a newly devised algorithm designed to optimize user tasks and allocate computing resources within rechargeable networks. The proposed algorithm, a synergy of Lyapunov-based, dynamic Long Short-Term Memory (LSTM) networks, and Particle Swarm Optimization (PSO), allows for predictive task allocation. The fog servers dynamically train LSTM networks to effectively forecast the data features of user tasks, facilitating proper unload decisions based on task priorities. In response to the challenge of slower hardware upgrades in edge devices compared to user demands, the algorithm optimizes the utilization of low-power devices and addresses performance limitations. Additionally, this paper considers the unique characteristics of rechargeable networks, where computing nodes acquire energy through charging. Utilizing Lyapunov functions for dynamic resource control enables nodes with abundant resources to maximize their potential, significantly reducing energy consumption and enhancing overall performance. The simulation results demonstrate that our algorithm surpasses traditional methods in terms of energy efficiency and resource allocation optimization. Despite the limitations of prediction accuracy in Fog Servers (FS), the proposed results significantly promote overall performance. The proposed approach improves the efficiency and the user experience of Internet of Things systems in terms of latency and energy consumption.

8.
J Pharm Biomed Anal ; 239: 115859, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016212

RESUMO

The quality of traditional Chinese medicine (TCM) is the premise to ensure its safety and effectiveness in clinical application. In this study, a complete quality control system for four-dimensional fingerprinting of TCM was innovatively constructed based on multiple detection techniques, and the quality of Shuanghuanglian oral liquid (SHL) was evaluated. Electrochemical fingerprinting (ECFP) as an emerging method without pretreatment provides rich and quantifiable information for SHL samples. The first quantitative ECFP of SHL was developed by the B-Z oscillation system. Eight characteristic parameters were analyzed and a good linear relationship was found between the oscillation lifetime and sample volume, by which the calculated values of the added sample volume (VL) showed different fluctuations between samples. What is more, high-performance liquid chromatography five-wavelength fusion fingerprint (HPLC-FWFP), GC fingerprint (GC-FP), and UV quantum fingerprint (UV-QFP) was established. Meanwhile, the purity of the peaks of the HPLC-FWFP was verified by the dual-wavelength absorption coefficient ratio spectrum (DWAR). Equal weighted ratio quantitative fingerprinting method (EWRQFM) was successfully proposed to extract all potential features for the overall quality assessment of the samples. Finally, a comprehensive evaluation strategy was proposed, namely the variation coefficient weighting algorithm (VCWA). The results of qualitative and quantitative evaluation of HPLC-FWFP, GC-FP, electrochemical quantum fingerprints (EC-QFP), and UV-QFP were integrated by this method. The established evaluation system is also a suitable strategy to control the quality of other TCM preparations.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Cromatografia Líquida de Alta Pressão/métodos
9.
Forensic Sci Int Genet ; 67: 102929, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611365

RESUMO

Hair is one of the common pieces of evidence at crime scenes, with abundant mitochondrial DNA but limited nuclear DNA in its shaft. It also helps to narrow the investigation scope to maternal lineage but fails to provide unique individual information. We assumed that RNA in hair shafts would be an alternative resource used to perform human identification based on the facts that (1) RNA retains the polymorphic information; (2) the multi-copy of RNA in a cell resists degradation as compared to the one-copy of nuclear DNA. In this study, we explored the potential of RNA polymorphism in hair shafts for forensic individual identification. A SNaPshot typing system was constructed using 18 SNPs located on 11 genes (ABCA13, AHNAK, EXPH5, KMT2D, KRT35, PPP1R15A, RBM33, S100A5, TBC1D4, TMC5, TRPV2). The RNA typing system was evaluated for sensitivity, species specificity, and feasibility for aged hair samples. Hair samples from a Shanxi population in China were used for the population study of the system. The detection limit of the assay was 2 ng RNA. The CDP of these 11 genes was 0.999969 in the Shanxi population. We also identified the concordance of the RNA and DNA typing results. In summary, we developed an RNA typing method to perform human identification from hair shafts, which performed as accurately as nuclear DNA typing. Our method provides a potential basis for solving the human identification problem from hair shafts, as well as other biological materials that lack nuclear DNA.


Assuntos
DNA Mitocondrial , Antropologia Forense , Humanos , Idoso , DNA Mitocondrial/genética , Impressões Digitais de DNA/métodos , Polimorfismo de Nucleotídeo Único , Cabelo , Proteínas Adaptadoras de Transdução de Sinal/genética
10.
J Hazard Mater ; 457: 131772, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37307725

RESUMO

Cyanobacterial blooms present great challenges to drinking water treatment and human health. The novel combination of potassium permanganate (KMnO4) and ultraviolet (UV) radiation is engaged as a promising advanced oxidation process in water purification. This study investigated the treatment of a typical cyanobacteria, Microcystis aeruginosa by UV/KMnO4. Cell inactivation was significantly improved by UV/KMnO4 treatment, compared to UV alone or KMnO4 alone, and cells were completely inactivated within 35 min by UV/KMnO4 in natural water. Moreover, effective degradation of associated microcystins was simultaneously achieved at UV fluence rate of 0.88 mW cm-2 and KMnO4 dosages of 3-5 mg L-1. The significant synergistic effect is possibly attributable to the highly oxidative species produced during UV photolysis of KMnO4. In addition, the cell removal efficiency via self-settling reached 87.9 % after UV/KMnO4 treatment, without additional coagulants. The fast in situ generated manganese dioxide was responsible for the enhancement of M. aeruginosa cell removal. This study firstly reports multiple roles of UV/KMnO4 process in cyanobacterial cell inactivation and removal, as well as simultaneous microcystin degradation under practical conditions.


Assuntos
Cianobactérias , Microcystis , Purificação da Água , Humanos , Microcistinas/metabolismo , Microcystis/metabolismo , Permanganato de Potássio
11.
J Chromatogr A ; 1702: 464098, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37257368

RESUMO

The antiviral oral liquid (AOL) was an antiviral drug currently in clinical trials against coronavirus disease 2019. This study aimed to improve its quality consistency evaluation method using fingerprint techniques from several aspects. First, the five-wavelength matched average fusion fingerprint (FMAFFP) for HPLC, electrochemical fingerprint (ECFP), and ultraviolet spectral quantum fingerprint (UVFP) was established for 22 samples, respectively. Their quality was then assessed using the average linear quantitative fingerprint method, and 22 samples were classified into eight quality grades. OPLS and PCA were then used further to explore the characteristic parameters of these three fingerprints. Five compounds were quantified simultaneously for the first time, and then the relationship between the average linear quantitative similarity (PL) and the sum of the five quantitative components (P5c) was investigated. A linear correlation (r ≥ 0.9735) between PL and P5c suggested that PL may be used to predict chemical content. Finally, to investigate the antioxidant potential of the AOL, correlation analyses were performed for FMAFFP peaks-PEC and UVFP peaks-PEC, respectively, where the PEC value was defined as the quantitative similarity of ECFP. The Pearson correlation coefficient and gray correlation analysis were consistent, allowing us to initially explore the antioxidant capacity of the unidentified components of the samples. This study researched AOL using multidimensional fingerprints to provide a comprehensive and reliable method for quality consistency control of herbal compound preparations.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Antivirais , Antioxidantes/análise
12.
JACS Au ; 3(3): 953-963, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006759

RESUMO

Electrolytes are critical for the reversibility of various electrochemical energy storage systems. The recent development of electrolytes for high-voltage Li-metal batteries has been counting on the salt anion chemistry for building stable interphases. Herein, we investigate the effect of the solvent structure on the interfacial reactivity and discover profound solvent chemistry of designed monofluoro-ether in anion-enriched solvation structures, which enables enhanced stabilization of both high-voltage cathodes and Li-metal anodes. Systematic comparison of different molecular derivatives provides an atomic-scale understanding of the unique solvent structure-dependent reactivity. The interaction between Li+ and the monofluoro (-CH2F) group significantly influences the electrolyte solvation structure and promotes the monofluoro-ether-based interfacial reactions over the anion chemistry. With in-depth analyses of the compositions, charge transfer, and ion transport at interfaces, we demonstrated the essential role of the monofluoro-ether solvent chemistry in tailoring highly protective and conductive interphases (with enriched LiF at full depths) on both electrodes, as opposed to the anion-derived ones in typical concentrated electrolytes. As a result, the solvent-dominant electrolyte chemistry enables a high Li Coulombic efficiency (∼99.4%) and stable Li anode cycling at a high rate (10 mA cm-2), together with greatly improved cycling stability of 4.7 V-class nickel-rich cathodes. This work illustrates the underlying mechanism of the competitive solvent and anion interfacial reaction schemes in Li-metal batteries and offers fundamental insights into the rational design of electrolytes for future high-energy batteries.

13.
Angew Chem Int Ed Engl ; 62(23): e202219310, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016460

RESUMO

Albeit ethers are favorable electrolyte solvents for lithium (Li) metal anode, their inferior oxidation stability (<4.0 V vs. Li/Li+ ) is problematic for high-voltage cathodes. Studies of ether electrolytes have been focusing on the archetype glyme structure with ethylene oxide moieties. Herein, we unveil the crucial effect of ion coordination configuration on oxidation stability by varying the ether backbone structure. The designed 1,3-dimethoxypropane (DMP, C3) forms a unique six-membered chelating complex with Li+ , whose stronger solvating ability suppresses oxidation side reactions. In addition, the favored hydrogen transfer reaction between C3 and anion induces a dramatic enrichment of LiF (a total atomic ratio of 76.7 %) on the cathode surface. As a result, the C3-based electrolyte enables greatly improved cycling of nickel-rich cathodes under 4.7 V. This study offers fundamental insights into rational electrolyte design for developing high-energy-density batteries.

14.
J Ethnopharmacol ; 311: 116442, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004746

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhizi Jinhua Pills (ZZJHP), a compound preparation composed of 8 traditional Chinese medicines (TCM), is widely used clinically to clearing heat, purging fire, cooling blood and detoxifying. However, the studies on its pharmacological activity and the determination of active compounds are relatively few. There is a lack of quality control methods that can reflect the effectiveness of the drug. AIM OF THE STUDY: The objective was to construct fingerprint profiles, conduct a spectrum-effect relationship study and establish an overall quality control method for ZZJHP through anti-inflammatory and redox activity studies. MATERIALS AND METHODS: Firstly, anti-inflammatory activity was tested using the xylene-induced ear edema model in mice. Then, Five-wavelength fusion HPLC fingerprint, electrochemical fingerprint, and Differential scanning calorimetry (DSC) profiling were established to evaluate ZZJHP more comprehensively, where Euclidean quantified fingerprint method (EQFM) was proposed for the similarity assessment of these three fingerprints. Moreover, the spectrum-activity relationship of HPLC-FP and DSC-FP with electrochemical activity helped explore the active components or ranges in the fingerprint. Finally, integrated analysis of HPLC, DSC and electrochemistry were used for the quality screen of samples from different manufacturers. RESULTS: ZZJHP was found to significantly decrease the levels of both TNF-α and IL-6 in the mice. Qualitatively, the integrated similarity Sm of 21 samples were all greater than 0.9, indicating the great consistency in chemical composition. Quantitatively, 9 batches of samples were classified as Grade1∼4; 6 batches of samples were classified as Grade5∼7 due to higher PINT; 6 batches of samples were classified as Grade4∼5 due to lower PINT. EQFM can qualitatively and quantitatively characterize the fingerprint profile information from an overall perspective. CONCLUSIONS: This strategy will contribute to the quantitative characterization of TCM and promote the application of fingerprint technology in the phytopharmacy field.


Assuntos
Medicamentos de Ervas Chinesas , Animais , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Varredura Diferencial de Calorimetria , Eletroquímica , Medicina Tradicional Chinesa
15.
ACS Appl Mater Interfaces ; 15(10): 13155-13164, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857304

RESUMO

Ethers are promising electrolytes for lithium (Li) metal batteries (LMBs) because of their unique stability with Li metal. Although intensive research on designing anion-enriched electrolyte solvation structures has greatly improved their electrochemical stabilities, ether electrolytes are approaching an anodic bottleneck. Herein, we reveal the strong correlation between electrolyte solvation structure and oxidation stability. In contrast to previous designs of weakly solvating solvents for enhanced anion reactivities, the triglyme (G3)-based electrolyte with the largest Li+ solvation energy among different linear ethers demonstrates greatly improved stability on Ni-rich cathodes under an ultrahigh voltage of 4.7 V (93% capacity retention after 100 cycles). Ether electrolytes with a stronger Li+ solvating ability could greatly suppress deleterious oxidation side reactions by decreasing the lifetime of free labile ether molecules. This study provides critical insights into the dynamics of the solvation structure and its significant influence on the interfacial stability for future development of high-efficiency electrolytes for high-energy-density LMBs.

16.
J Am Chem Soc ; 145(11): 6339-6348, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36892881

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most promising routes to facilitate carbon neutrality. An alkaline electrolyte is typically needed to promote the production of valuable multi-carbon molecules (such as ethylene). However, the reaction between CO2 and OH- consumes a significant quantity of CO2/alkali and causes the rapid decay of CO2RR selectivity and stability. Here, we design a catalyst-electrolyte interface with an effective electrostatic confinement of in situ generated OH- to improve ethylene electrosynthesis from CO2 in neutral medium. In situ Raman measurements indicate the direct correlation between ethylene selectivity and the intensities of surface Cu-CO and Cu-OH species, suggesting the promoted C-C coupling with the surface enrichment of OH-. Thus, we report a CO2-to-ethylene Faradaic efficiency (FE) of 70% and a partial current density of 350 mA cm-2 at -0.89 V vs the reversible hydrogen electrode. Furthermore, the system demonstrated a 50 h stable operation at 300 mA cm-2 with an average ethylene FE of ∼68%. This study offers a universal strategy to tune the reaction micro-environment, and a significantly improved ethylene FE of 64.5% was obtained even in acidic electrolytes (pH = 2).

17.
Chem Sci ; 14(5): 1184-1193, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756331

RESUMO

Nonflammable electrolytes are critical for the safe operation of high-voltage lithium-ion batteries (LIBs). Although organic phosphates are effective flame retardants, their poor electrochemical stability with a graphite (Gr) anode and Ni-rich cathodes would lead to the deterioration of electrode materials and fast capacity decay. Herein, we develop a safe and high-performance electrolyte formulation for high-voltage (4.6 V-class) LIBs using flame-retarding ethoxy(pentafluoro) cyclotriphosphazene (PFPN) as a non-solvating diluent for the high-concentration carbonate-ether hybrid electrolyte. In contrast to conventional nonflammable additives with restricted dosage, the high level of PFPN (69% mass ratio in our electrolyte design) could significantly increase the electrolyte flash point and protect the favored anion-rich inner solvation sheath because of its non-solvating feature, thus preventing solvent co-intercalation and structural damage to the Gr anode. The nonflammable electrolyte could also form a stable LiF-rich cathode electrolyte interphase (CEI), which enables superior electrochemical performances of Gr‖LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells at high voltages (∼82.0% capacity retention after 1000 cycles at 4.5 V; 89.8% after 300 cycles at 4.6 V) and high temperatures (50 °C). This work sheds light on the electrolyte design and interphase engineering for developing practical safe high-energy-density LIBs.

18.
Ecotoxicol Environ Saf ; 251: 114523, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638565

RESUMO

Saline-alkalinity is one of the important ecological parameter that has an impact function on the physiological metabolism, osmoregulation, survival, growth, development and distribution of teleost fish. Oreochromis mossambicus, a species of euryhaline that can withstand a wide variety of salinities, may be used as a research model animal in environmental studies. In order to detect the metabolism responses and mechanisms of different osmotic stresses tolerance in the gills of O. mossambicus, in present study, the metabolic responses of O. mossambicus subjected to salinity (25 g/L, S_S), alkalinity (4 g/L, A_S) and saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L; SA_S) with the control environment (freshwater, C_S) were investigated by LC-MS/MS-based metabolomics. The metabolism results indicated that numerous metabolites were identified between the stress groups and the control group. In addition, under three osmotic stresses, the amino acid and carbohydrate metabolism, levels of amino acids, osmolytes and energy substances, such as L-lysine, arachidonic acid, docosahexaenoic acids, creatine and taurine, were significantly affected and changed in the metabolism of the gills of O. mossambicus. The metabolism data indicated that signal transduction and regulation pathways, including FoxO signaling pathway, mTOR signaling pathway and prolactin signaling pathway, were enriched in the gill during adaptation to high salinity, alkalinity and saline-alkalinity stress. The results of this study provide more comprehensive and reliable data for the osmotic pressure regulation mechanism and biological response of euryhaline teleost, and provide reliable scientific basis for the breeding and research of high salinity tolerance population, and further promote the development and utilization of saline-alkalinity water resources.


Assuntos
Tilápia , Animais , Tilápia/metabolismo , Salinidade , Brânquias/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
19.
Artigo em Inglês | MEDLINE | ID: mdl-36495832

RESUMO

Multiple abiotic stresses are imposed on fish as a result of unprecedented changes in temperature and precipitation patterns in recent decades. It is unclear how teleosts respond to severe ambient salinity, alkalinity, and saline-alkalinity in terms of their metabolic and molecular osmoregulation processes. The metabolic reactions in the intestine of Oreochromis mossambicus under salinity (25 g/L, S_C), alkalinity (4 g/L, A_C), and saline-alkalinity (salinity: 25 g/L & alkalinity: 4 g/L, SA_C) stresses were examined in this research utilizing LC-MS/MS-based metabolomics. The findings demonstrated that the three osmotic-stressed groups' metabolic profiles were considerably different from those of the control group. Osmolytes, energy sources, free amino acids, and several intermediate metabolites were all synthetically adjusted as part of the osmoregulation associated with the salinity, alkalinity, and saline-alkalinity stress. Following osmotic stress, osmoregulation-related pathways, including the mTOR signaling pathway, TCA cycle, glycolysis/gluconeogenesis, etc., were also discovered in the intestine of O. mossambicus. Overall, our findings can assist in better comprehending the molecular regulatory mechanism in euryhaline fish under various osmotic pressures and can offer a preliminary profile of osmotic regulation.


Assuntos
Salinidade , Tilápia , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Intestinos
20.
Forensic Sci Int Genet ; 62: 102788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265335

RESUMO

Identifying the origin of body fluids is a critical step in a forensic investigation. One widely used method to identify human body fluids is based on the color visualization of immune antigen detection strips for detecting hemoglobin in blood and prostate-specific antigen in semen. It is highly imperative to construct an easy-to-perform, mRNA-based method for the point-of-care identification of other human body fluids, such as saliva and vaginal secretion. Here, we established specific strips with the mRNA markers STATH (for saliva) and SPINK5 (for vaginal secretion) via reverse transcription recombinase polymerase amplification (RT-RPA) and lateral flow dipstick (LFD) assays (RT-RPA-LFD). RT-RPA could be accomplished in a single tube at a wide temperature range of 30-42 â„ƒ within 10-25 min if we do not count time for RNA extraction. The diluted RPA products were added onto the LFD strip pad to visually observe the color change of the Control/Test line. The tissue specificity and detection limit of the assays were evaluated using the optimized reaction conditions of RPA at 37 â„ƒ for 15 min. The positive signals of STATH were observed both in saliva and nasal secretions. SPINK5 was positive in a template-dependent manner in 4 out of 30 female urine samples in addition to vaginal secretion and menstrual blood samples. Cross-reactions were not detected in semen, skin swabs, sweat, or male urine. Both assays were capable of detecting aged samples, which were stored for 180 days (saliva) or 300 days (vaginal secretion) at room temperature. Moreover, saliva or vaginal secretion was successfully detected in all kinds of mixtures made from various body fluids. Overall, the rapid strip test method by the RT-RPA-LFD assay is simple, time-saving and highly sensitive for estimating the tissue origin of saliva and vaginal secretion. This method for the rapid RNA-based presumptive tests of the tissue type of body fluids is easy to perform prior to a multiplex mRNA analysis, which can demonstrate more reliable saliva or vaginal secretion identification.


Assuntos
Líquidos Corporais , Recombinases , Feminino , Humanos , Masculino , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA , RNA Mensageiro/genética , Proteínas e Peptídeos Salivares/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA