RESUMO
Understanding the effects of different land use modes on the spatial and temporal variations of soil moisture and temperature in the deep profile and revealing the regulatory effects of various vegetation covers on regional water and heat resources can provide a theoretical basis for the optimization of land management and vegetation restoration. Taking the advantage of different land use patterns in the Liudaogou watershed in the northern part of Loess Plateau, we monitored soil moisture content as well as temperature in the 0-1000 cm soil layer in 2022 to analyze the temporal variation and vertical profile distribution characteristics of soil moisture and temperature under four land use modes (woodland, grassland, farmland, and wild grassland). The results showed that soil moisture and temperature distributions varied significantly across different land use types. In the growing season (April-October), total soil water storage in the 0-1000 cm soil layer of the four land use types, in a descending order, was as follows: soybean farmland (1393 mm), wild grassland (1374 mm), Caragana korshinkii forest (1218 mm), and alfalfa grassland (557 mm). Soil moisture of C. korshinkii forest and soybean farmland changed obviously in the 0-300 cm soil layer, and that of wild grassland and alfalfa grassland was in 0-500 and 0-200 cm soil layers, respectively, while soil moisture of deep soil layers fluctuated little. The impact of land use modes on soil temperature was primarily manifested in the 0-200 cm soil layer, and the depth was up to 300 cm. The depth of precipitation infiltration replenishment of the four land use modes was approximately 200 cm. The depth of soil moisture depletion was 200 cm in both C. korshinkii forest and alfalfa grassland, and was 100 cm in soybean farmland and wild grassland. Soil hydrothermal processes in the deep profile varied across vegetation types.
Assuntos
Produtos Agrícolas , Pradaria , Solo , Temperatura , Água , China , Solo/química , Água/análise , Produtos Agrícolas/crescimento & desenvolvimento , Florestas , Poaceae/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Altitude , Árvores/crescimento & desenvolvimento , Caragana/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental/métodos , Medicago sativa/crescimento & desenvolvimentoRESUMO
Sub-10 µm microplastics (MPs) in aquatic environments pose significant ecological and health risks due to their mobility and potential to carry harmful microcontaminants. Our effluent analysis from a Hong Kong Sewage Treatment Works shows that traditional treatment often fails to effectively remove these MPs. These small-sized MPs are commonly neglected due to challenges in accurate quantification, analysis, and removal. This study introduces a nanobubble-assisted flotation process that enhances the removal efficiency of both regular and irregular small-sized MPs from wastewater. The proposed process outperforms the traditional flotation process by fostering a more effective interaction between bubbles and MPs, increasing removal rates of MPs from 1 µm to 10 µm by up to 12% and providing a total efficiency boost of up to 17% for various particle sizes. Improvements are attributed to enhanced collision and adhesion probabilities, hydrophobic interactions, as well as better floc flotation. Supported by empirical evidence, mathematical models, and Molecular Dynamics simulations, this research elucidates the nanoscale mechanisms at play. The findings confirm the nanobubble-assisted flotation technique as an innovative and practical approach to removing sub-10 µm MPs in water treatment processes.
RESUMO
BACKGROUND: Cytomegalovirus (CMV) reactivation is a serious problem in recipients of allogeneic hematopoietic stem cell transplantation. Long-term latency depends on specific T cell immune reconstitution, which identifies various pathogens by T cell receptors (TCRs). However, the mechanisms underlying the selection of CMV-specific TCRs in recipients after transplantation remain unclear. METHODS: Using high-throughput sequencing and bioinformatics analysis, the T cell immune repertoire of seven CMV reactivated recipients (CRRs) were analyzed and compared to those of seven CMV non-activated recipients (CNRs) at an early stage after transplant. RESULTS: The counts of unique complementarity-determining region 3 (CDR3) were significantly higher in CNRs than in CRRs. The CDR3 clones in the CNRs exhibit higher homogeneity compared to the CRRs. With regard to T cell receptor ß-chain variable region (TRBV) and joint region (TRBJ) genotypes, significant differences were observed in the frequencies of TRBV6, BV23, and BV7-8 between the two groups. In addition to TRBV29-1/BJ1-2, TRBV2/BJ2-2, and TRBV12-4/BJ1-5, 11 V-J combinations had significantly different expression levels between CRRs and CNRs. CONCLUSIONS: The differences in TCR diversity, TRBV segments, and TRBV-BJ combinations observed between CNRs and CRRs might be associated with post-transplant CMV reactivation and could serve as a foundation for further research.
Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos de Linfócitos T , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Citomegalovirus/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Masculino , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Adulto , Feminino , Pessoa de Meia-Idade , Transplante Homólogo/efeitos adversos , Regiões Determinantes de Complementaridade/genética , Transplantados , Sequenciamento de Nucleotídeos em Larga Escala , Adulto Jovem , Ativação Viral , Genótipo , Linfócitos T/imunologia , Adolescente , Biologia Computacional/métodosRESUMO
Background The potential of time-dependent diffusion MRI in imaging the progression from liver fibrosis to cirrhosis has not been established. Purpose To assess the effectiveness of time-dependent diffusion MRI in mapping the microstructure and characterizing cellular attributes during the progression of liver fibrosis to cirrhosis and to investigate its potential in grading liver fibrosis. Materials and Methods This prospective study, performed between December 2022 and October 2023, used 60 rats to establish a liver fibrosis model by means of diethylnitrosamine administration, with five additional rats serving as control animals. Time-dependent diffusion MRI was performed with equivalent diffusion time of 5.4, 10.7, and 69.3 msec on a 3.0-T scanner. Time-dependent diffusion MRI-based microstructural parameters, including cell diameter, intracellular volume fraction (ICVF), cellularity, and extracellular diffusivity, were estimated with use of the imaging microstructural parameters using limited spectrally edited diffusion, or IMPULSED, model. The fitted microstructural parameters were validated with histopathologic measurements. Results All 60 rats developed liver fibrosis, with a noticeable decrease in cell diameter and an increase in ICVF and cellularity observed as liver fibrosis progressed. The diameter measured at pathologic examination ranged from 11.4 µm to 35.4 µm, aligning with the range of 12.4-33.4 µm observed in time-dependent diffusion MRI, which indicated a strong correlation (r = 0.84; P < .001). The quantified ICVF at pathologic examination ranged from 0.28 to 0.89 and varied from 0.23 to 0.85 at time-dependent diffusion MRI, showing a high correlation (r = 0.62; P < .001). The cellularity observed at pathologic examination increased from 0.74 to 5.85, while the cellularity measured at time-dependent diffusion MRI ranged from 0.77 to 3.70, showing a correlation (r = 0.44; P < .001). Conclusion This study revealed the changes in quantitative microstructural mapping across the spectrum from liver fibrosis to cirrhosis. Cell diameter, ICVF, and cellularity are reliable markers for liver fibrosis, with diameter and ICVF presenting good discrimination ability. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Matos and Metens in this issue.
Assuntos
Imagem de Difusão por Ressonância Magnética , Cirrose Hepática , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Ratos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Masculino , Estudos Prospectivos , Progressão da Doença , Fígado/diagnóstico por imagem , Fígado/patologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Fatores de TempoRESUMO
Background: Acute Coronary Syndrome (ACS) continues to be a leading cause of death and illness worldwide. Differentiating stable from unstable coronary plaques is essential for enhancing patient outcomes. This research investigates the role of CD147 as a biomarker for plaque stability among coronary artery disease patients. Methods: The study began with high-throughput sequencing of blood samples from six patients, divided equally between those with Stable Angina (SA) and Unstable Angina (UA), followed by bioinformatics analysis. Expanding upon these findings, the study included 31 SA patients and 30 patients with ACS, using flow cytometry to examine CD147 expression on platelets and monocytes. Additionally, logistic regression was utilized to integrate traditional risk factors and evaluate the predictive value of CD147 expression for plaque stability. Results: Initial sequencing displayed a notable difference in CD147 expression between SA and UA groups, with a significant increase in UA patients. Further analysis confirmed that elevated platelet CD147 expression was strongly associated with unstable plaques (OR = 277.81, P < .001), after adjusting for conventional risk factors, whereas monocyte CD147 levels did not show a significant difference. Conclusion: Elevated CD147 expression on platelets is a crucial biomarker for identifying unstable coronary artery plaques, offering insights into patient risk stratification and the development of targeted treatment strategies. This underscores the pivotal role of molecular research in understanding and managing coronary artery disease, paving the way for improved clinical outcomes.
RESUMO
The development of new ionic conductors meeting the requirements of current solid-state devices is imminent but still challenging. Hydrogen-bonded ionic co-crystals (HICs) are multi-component crystals based on hydrogen bonding and Coulombic interactions. Due to the hydrogen bond network and unique features of ionic crystals, HICs have flexible skeletons. More importantly, anion vacancies on their surface can potentially help dissociate and adsorb excess anions, forming cation transport channels at grain boundaries. Here, it is demonstrated that a HIC optimized by adjusting the ratio of zinc salt and imidazole can construct grain boundary-based fast Zn2+ transport channels. The as-obtained HIC solid electrolyte possesses an unprecedentedly high ionic conductivity at room and low temperatures (≈11.2 mS cm-1 at 25 °C and ≈2.78 mS cm-1 at -40 °C) with ultra-low activation energy (≈0.12 eV), while restraining dendrite growth and exhibiting low overpotential even at a high current density (<200 mV at 5.0 mA cm-2) during Zn symmetric cell cycling. This HIC also allows solid-state Zn||covalent organic framework full cells to work at low temperatures, providing superior stability. More importantly, the HIC can even support zinc-ion hybrid supercapacitors to work, achieving extraordinary rate capability and a power density comparable to aqueous solution-based supercapacitors. This work provides a path for designing facilely prepared, low-cost, and environmentally friendly ionic conductors with extremely high ionic conductivity and excellent interface compatibility.
RESUMO
Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interest because the large planar structure of the pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by the Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, energy storage, etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.
RESUMO
Oxy-steam combustion is a new oxy-fuel combustion technology. This paper focuses on the NO emission characteristics during the combustion of SF (Shen Fu) coal in O2/N2 and O2/H2O mixtures. Experiments were performed in a drop-tube furnace. Combustion tests were carried out in O2/N2 and O2/H2O atmospheres for various O2 concentrations (21%, 30%, 40%, and 60%) at different temperatures (1173 K, 1273 K, and 1373 K). In addition, combustion experiments at different excess oxygen ratios (λ) were conducted in O2/N2 and O2/H2O atmospheres. The influences of the atmosphere, oxygen concentration, temperature, and excess oxygen ratio on NO emissions were analyzed. The results show that the NO concentrations of SF coal combustion in the 21% O2/79% H2O atmosphere were much lower than those in the 21% O2/79% N2 atmosphere at the three temperatures considered. This was because a large amount of NO was decomposed during the SF coal combustion in the O2/H2O atmospheres. The reasons for the decomposition of NO include the selective non-catalytic reaction (SNCR) mechanism and char's important role as a catalyst for the destruction of NO, either directly or by reacting with CO or H2. In oxy-steam combustion, the NO concentrations significantly increased with the increase in the oxygen concentration from 21 vol.% to 60 vol.% and the temperature from 1173 K to 1373 K. The excess oxygen ratio (λ) slightly impacted the NO emissions in the O2/H2O atmosphere.
RESUMO
Aqueous asymmetric catalysis using chiral covalent organic frameworks (COFs) represents a significant advancement but remains to be explored. Herein, we present the first example of aqueous asymmetric catalysis catalyzed by a primary amine-tagged chiral D-ADP-TAPB COF. The D-ADP-TAPB COF was synthesized by the postsynthetic deprotection of D-ADP-TAPB-Boc bearing a protective tert-butoxycarbonyl (Boc) group, which was constructed by a Schiff-base reaction between an alanine-derived chiral building block (D-ADP-Boc) and 1,3,5-tris(4-aminophenyl)benzene (TAPB). The crystalline D-ADP-TAPB COF exhibits a uniform, spherical morphology with abundant, well-distributed chiral primary amines, rendering it highly active in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde. Notably, this reaction is conducted entirely in water, achieving impressive yields and enantiomeric excess (ee) values of up to 90 and 85%, respectively. To the best of our knowledge, D-ADP-TAPB COF represents the first chiral COF catalyst with high reactivity and enantioselectivity for an asymmetric aldol reaction solely in water, eliminating the need for conventional organic solvents. Moreover, a plausible mechanism for D-ADP-TAPB COF-mediated aqueous asymmetric aldol reactions is elucidated. This work not only expands the toolbox for designing rare primary amine-functionalized chiral COFs for asymmetric catalysis but also opens exciting avenues for developing green and water-based enantioselective catalysis.
RESUMO
OBJECTIVE: Understanding the differences of suprasellar papillary and adamantinomatous craniopharyngiomas (PCPs/ACPs) is pivotal for target therapy, surgical strategy or postoperative management. Here, the clinical features, surgical nuances and postoperative hypothalamic outcomes of PCPs were systematically recapitulated. METHODS: 24 PCPs and 52 ACPs underwent initial surgery were retrospectively reviewed. Clinical data, quantified third ventricle (3rd V) occupation and optic chiasm distortion were compared, as well as intra-operative findings, operating notes and prognosis. Moreover, analysis of tumor/3rd V relationship and hypothalamic outcomes were also performed. RESULTS: Tumors were more likely to occupies the 3rd V cavity in PCPs. Chiasm distortion of "compressed forward" was the most common pattern (45.8 %) in PCPs, whereas "stretched forward" pattern accounted the highest (42.5 %) in ACPs. Besides, round-shaped with less calcification, duct-like recess, solid consistency, rare subdiaphragmatic invasion, visible lower stalk and improved postoperative visual outcome were more frequently observed in PCPs. The basal membranes of the tumor epithelium and the reactive gliosis were separated by a layer of collagen fibers in most PCPs, which differs from ACPs in the morphological examination of tumor/3rd V floor interface. In daytime sleepiness and memory difficulty, the PCPs showed significantly better outcomes than the ACPs groups, and PCPs suffered less postoperative weight gain (p < 0.05) than ACPs among adult-onset cases. CONCLUSION: PCPs are different from ACPs regards the clinical features, operative techniques and outcomes. If necessary, PCPs are suggested more amenable to total removal since its less invasiveness to the 3rd V floor and better hypothalamic outcomes.
Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Humanos , Craniofaringioma/cirurgia , Craniofaringioma/patologia , Masculino , Feminino , Adulto , Adolescente , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/patologia , Adulto Jovem , Criança , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Hipotálamo/patologia , Hipotálamo/cirurgia , Pré-Escolar , Imageamento por Ressonância MagnéticaRESUMO
Selenoprotein M (SELENOM) has emerged as a crucial factor in maintaining cellular redox homeostasis and mitigating oxidative damage. This study aims to investigate its protective role in cardiac endothelial cells under hyperglycemic stress, a condition commonly associated with diabetes mellitus and its cardiovascular complications. Diabetic mice model and human umbilical vein endothelial cells (HUVECs) were applied for in vivo and in vitro studies. Results reveal that hyperglycemia significantly downregulates SELENOM expression in both diabetic mouse hearts and primary cultured cardiac endothelial cells. Overexpression of SELENOM in HUVECs mitigated high-glucose-induced FITC-Dextran diffusion and the loss of transendothelial electrical resistance. Additionally, SELENOM overexpression decreased reactive oxygen species (ROS) levels, preserved tight junction protein expression, and maintained cellular structural integrity under hyperglycemic conditions. Furthermore, SELENOM overexpression attenuated high-glucose-induced mitochondrial apoptosis. High-glucose conditions decreased Parkin and increased p62 and Beclin1 expressions. SELENOM overexpression restored Parkin levels and promoted co-localization of LAMP1 and TOMM20. Knockdown of Parkin significantly attenuated these protective effects, suggesting the importance of Parkin in Selenoprotein M-mediated mitophagy. Collectively, these findings suggest that Selenoprotein M enhances Parkin-mediated mitophagy to protect endothelial cells from hyperglycemic stress, offering potential therapeutic insights for diabetic cardiovascular complications.
RESUMO
Malaria is a deadly disease caused by Apicomplexan parasites of the Plasmodium genus. Several species of the Plasmodium genus are known to be infectious to humans, of which P. falciparum is the most virulent. Post-translational modifications (PTMs) of proteins coordinate cell signaling and hence regulate many biological processes in P. falciparum homeostasis and host infection, of which the most highly studied is phosphorylation. Phosphosites on proteins can be identified by tandem mass spectrometry (MS) performed on enriched samples (phosphoproteomics), followed by downstream computational analyses. We have performed a large-scale meta-analysis of 11 publicly available phosphoproteomics data sets to build a comprehensive atlas of phosphosites in the P. falciparum proteome, using robust pipelines aimed at strict control of false identifications. We identified a total of 26,609 phosphorylated sites on P. falciparum proteins, split across three categories of data reliability (gold/silver/bronze). We identified significant sequence motifs, likely indicative of different groups of kinases responsible for different groups of phosphosites. Conservation analysis identified clusters of phosphoproteins that are highly conserved and others that are evolving faster within the Plasmodium genus, and implicated in different pathways. We were also able to identify over 180,000 phosphosites within Plasmodium species beyond falciparum, based on orthologue mapping. We also explored the structural context of phosphosites, identifying a strong enrichment for phosphosites on fast-evolving (low conservation) intrinsically disordered regions (IDRs) of proteins. In other species, IDRs have been shown to have an important role in modulating protein-protein interactions, particularly in signaling, and thus warranting further study for their roles in host-pathogen interactions. All data have been made available via UniProtKB, PRIDE, and PeptideAtlas, with visualization interfaces for exploring phosphosites in the context of other data on Plasmodium proteins.
RESUMO
Non-small cell lung cancer (NSCLC) is marked by complex molecular aberrations including differential expression of circular RNAs (circRNAs). hsa_circ_0002360, a circRNA, has been identified as overexpressed in NSCLC. This study aimed to evaluate the expression patterns of hsa_circ_0002360 and its potential role as an oncogenic factor in NSCLC. We analyzed two GEO datasets (GSE112214 and GSE158695) using R software to identify differentially expressed circRNAs. Quantitative reverse transcription PCR (qRT-PCR) assessed the expression of hsa_circ_0002360 in NSCLC tissues and cell lines compared to controls. We used siRNA and overexpression vectors to modulate hsa_circ_0002360 levels in A549 cells, followed by assays to assess proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). Interactions with RNA-binding proteins, specifically HNRNPA1, were investigated using RNA-pull down and RIP assays. In GEO datasets GSE112214 and GSE158695, hsa_circ_0002360 was identified as significantly overexpressed in NSCLC, a finding supported by qRT-PCR analyses showing higher levels in NSCLC tissues and cell lines compared to controls. Functional assays demonstrated that knockdown of hsa_circ_0002360 in A549 cells decreased proliferation, migration, invasion, and altered epithelial-mesenchymal transition marker expression, while inducing apoptosis, suggesting its oncogenic role. Conversely, overexpression promoted tumor characteristics, corroborated by in vivo xenograft models showing increased tumor growth. Hsa_circ_0002360's interaction with HNRNPA1, evidenced through RNA-pull down and RIP assays, implicates it in regulatory pathways that enhance NSCLC progression. This expression was also correlated with advanced TNM stages and metastasis, highlighting its potential as a therapeutic target. hsa_circ_0002360 acts as an oncogene in NSCLC, promoting tumor progression and metastasis through regulation of cell growth, apoptosis, and EMT processes. The interaction between hsa_circ_0002360 and HNRNPA1 suggests a novel mechanism of circRNA-mediated modulation of NSCLC pathology, providing potential targets for therapeutic intervention.
RESUMO
Super enhancers (SEs) are large clusters of transcriptional enhancers driving the expression of genes crucial for defining cell identity. In cancer, tumor-specific SEs activate key oncogenes, leading to tumorigenesis. Identifying SE-driven oncogenes in tumors and understanding their functional mechanisms is of significant importance. In this study, a previously unreported SE region is identified in T-cell acute lymphoblastic leukemia (T-ALL) patient samples and cell lines. This SE activates the expression of interferon regulatory factor 2 binding protein 2 (IRF2BP2) and is regulated by T-ALL master transcription factors (TFs) such as ETS transcription factor ERG (ERG), E74 like ETS transcription factor 1 (ELF1), and ETS proto-oncogene 1, transcription factor (ETS1). Hematopoietic system-specific IRF2BP2 conditional knockout mice is generated and showed that IRF2BP2 has minimal impact on normal T cell development. However, in vitro and in vivo experiments demonstrated that IRF2BP2 is crucial for T-ALL cell growth and survival. Loss of IRF2BP2 affects the MYC and E2F pathways in T-ALL cells. Cleavage under targets and tagmentation (CUT&Tag) assays and immunoprecipitation revealed that IRF2BP2 cooperates with the master TFs of T-ALL cells, targeting the enhancer of the T-ALL susceptibility gene recombination activating 1 (RAG1) and modulating its expression. These findings provide new insights into the regulatory network within T-ALL cells, identifying potential new targets for therapeutic intervention.
RESUMO
Background/purpose: Oral submucous fibrosis (OSF) is a condition characterized by inflammation and excessive collagen deposition, which has been identified as a potentially malignant disorder. Recently, several microRNAs (miRNAs) have been shown to be implicated in various disorders associated with fibrosis. However, how these miRNAs modulate OSF development is poorly understood. Therefore, the study aimed to identify the specific miRNAs that contribute to the progression of OSF and to investigate their molecular mechanisms in promoting fibrosis. Materials and methods: The expression and clinical significance of potential pro-fibrosis miRNA in the OSF cohort and primary buccal mucosal fibroblasts were confirmed through RNA sequencing and qRT-PCR. Luciferase reporter activity assay, miRNA mimic or inhibitor, and short-hairpin RNA silencing were used to elucidate the molecular mechanism of miRNA. Transwell migration, collagen contraction, and reactive oxygen species (ROS) generation detection were used to investigate the effects of this mechanism on the myofibroblast phenotype and cellular pro-fibrosis capacity. Results: This study demonstrated that miR-190a was overexpressed in fibrotic buccal mucosal fibroblasts (fBMFs). Transfecting fBMFs with miR-190a inhibitor resulted in reduced cell migration, collagen gel contraction, ROS generation, and expression of fibrotic markers. Furthermore, miR-190a exerted this pro-fibrosis property by direct binding to its target, Krüppel-like factor 15 (KLF15). The results also indicated that the aberrant upregulation of miR-190a, in turn, downregulated the expression of KLF15, which resulted in the activation of myofibroblast. Conclusion: Our findings demonstrated that miR-190a was involved in myofibroblast activation, suggesting that targeting the miR-190a/KLF15 axis may be a feasible approach in the therapy of OSF.
RESUMO
OBJECTIVE: This study aims to examine the expression of androgen receptor (AR) and estrogen receptor (ER) in patients with classic Kaposi's sarcoma (CKS) in Xinjiang, as well as to assess the serum levels of sex hormones in these patients. The objective is to explore potential new directions and targets for diagnosing and treating CKS in Xinjiang. METHODS: The case group comprised 35 patients diagnosed with CKS who presented at our hospital from 2014 to 2021. The control group consisted of 35 patients with pyogenic granuloma (PG) who visited the hospital during the same period, selected using propensity score matching (PSM). Immunohistochemistry was used to detect AR, human herpesvirus type 8 (HHV-8), and ER in paraffin-embedded tissue samples from patients diagnosed with CKS and PG. Additionally, enzyme-linked immunosorbent assay (ELISA) was used to quantitatively measure serum sex hormone levels in the 35 patients with CKS and 35 patients with PG. RESULTS: AR expression was relatively weak in both the CKS and PG groups, with the PG group exhibiting a slightly stronger expression than the CKS group. Conversely, the expression of ER was significantly higher in the CKS group compared to the PG group (p < 0.05). Additionally, serum testosterone (T) levels were elevated in the CKS group, while serum estradiol (E2) levels were higher in the PG group (p < 0.05). CONCLUSION: Sex hormones and their receptors are implicated in the pathogenesis of CKS in Xinjiang. The use of ER antagonists may represent a novel avenue for research and treatment of CKS.
Assuntos
Receptores Androgênicos , Receptores de Estrogênio , Sarcoma de Kaposi , Humanos , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/sangue , Sarcoma de Kaposi/etnologia , Masculino , Receptores Androgênicos/metabolismo , Feminino , Pessoa de Meia-Idade , China , Receptores de Estrogênio/metabolismo , Idoso , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/metabolismo , Adulto , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/sangue , Herpesvirus Humano 8RESUMO
Two-dimensional (2D) materials, as adsorbents, have garnered great attention in removing heavy metal ions (HMIs) from drinking water due to their extensive exposed adsorption sites. Nevertheless, there remains a paucity of experimental research to remarkably unlock their adsorption capabilities and fully elucidate their adsorption mechanisms. In this work, exceptional lead ion (Pb2+) (a common HMI) removal capacity (up to 758 mg g-1) is achieved using our synthesized metallic 1T/1T' phase 2D transition metal dichalcogenide (TMD, including MoS2, WS2, TaS2, and TiS2) nanosheets, which hold tremendous activated S chemisorption sites. The residual Pb2+ concentration can be reduced from 2 mg L-1 to 2 µg L-1 within 0.5 min, meeting the drinking water standards following World Health Organization guideline (Pb2+ concentrations <10 µg L-1). Atomic-scale characterizations and calculations based on density functional theory unveil that Pb2+ bond to the top positions of transition metal atoms in a single-atom form through the formation of S-Pb bonds. Point-of-use (POU) devices fabricated by our reported metallic phase MoS2 nanosheets exhibit treatment capacity of 55 L-water g-1-adsorbent for feed Pb2+ concentration of 1 mg L-1, which is 1-3 orders of magnitude higher than other 2D materials and commercial activated carbon.
RESUMO
As a representative of zeolitic imidazolate framework glass, agZIF-62 has been reported to be synthesized using a melt-quenching method in which the ZIF-62 crystal is heated to a temperature above the melting point. Interestingly, we unexpectedly found that agZIF-62 can also be synthesized by simple heating at temperatures lower than the melting point, which may be assisted by the release of encapsulated solvent molecules. The structural differences between melt-quenched agZIF-62 (MQ-agZIF-62) and heat-cooled agZIF-62 (HC-agZIF-62) were investigated. The results indicated that MQ-agZIF-62 is closer to the liquid state, while HC-agZIF-62 is closer to the crystal state. Interestingly, their luminescent emissions exhibit significant differences. Compared with the ZIF-62 crystal, MQ-agZIF-62 showed a blue-shift of 14 nm, whereas HC-agZIF-62 showed a red-shift of 9 nm. The emission intensity of agZIF-62 is also significantly stronger than that of ZIF-62; thus, rapid semiquantitative detection of the content of the MOF glass in glass and crystal mixtures can be achieved. In addition, HC-agZIF-62 and MQ-agZIF-62 can transform into ZIF-62 crystals via a solvent-media mechanism. This study provides new insights into ZIF-62 glass.
RESUMO
Background: Pulmonary tuberculosis (PTB), as a respiratory infectious disease, poses significant risks of covert transmission and dissemination. The high aggregation and close contact among students in Chinese schools exacerbate the transmission risk of PTB outbreaks. Objective: This study investigated the epidemiological characteristics, geographic distribution, and spatiotemporal evolution of student PTB in Chongqing, Southwest China, aiming to delineate the incidence risks and clustering patterns of PTB among students. Methods: PTB case data from students monitored and reported in the Tuberculosis Information Management System within the China Information System for Disease Control and Prevention were used for this study. Descriptive analyses were conducted to characterize the epidemiological features of student PTB. Spatial trend surface analysis, global and local spatial autocorrelation analyses, and disease rate mapping were performed using ArcGIS 10.3. SaTScan 9.6 software was used to identify spatiotemporal clusters of PTB cases. Results: From 2016 to 2022, a total of 9920 student TB cases were reported in Chongqing, Southwest China, with an average incidence rate of 24.89/100,000. The incidence of student TB showed an initial increase followed by a decline, yet it remained relatively high. High school students (age: 13-18 years; 6649/9920, 67.03%) and college students (age: ≥19 years; 2921/9920, 29.45%) accounted for the majority of student PTB cases. Patient identification primarily relied on passive detection, with a high proportion of delayed diagnosis and positive etiological results. COVID-19 prevention measures have had some impact on reducing incidence levels, but the primary factor appears to be the implementation of screening measures, which facilitated earlier case detection. Global spatial autocorrelation analysis indicated Moran I values of >0 for all years except 2018, ranging from 0.1908 to 0.4645 (all P values were <.05), suggesting strong positive spatial clustering of student PTB cases across Chongqing. Local spatial autocorrelation identified 7 high-high clusters, 13 low-low clusters, 5 high-low clusters, and 4 low-high clusters. High-high clusters were predominantly located in the southeast and northeast parts of Chongqing, consistent with spatial trend surface analysis and spatiotemporal clustering results. Spatiotemporal scan analysis revealed 4 statistically significant spatiotemporal clusters, with the most likely cluster in the southeast (relative risk [RR]=2.87, log likelihood ratio [LLR]=574.29, P<.001) and a secondary cluster in the northeast (RR=1.99, LLR=234.67, P<.001), indicating higher reported student TB cases and elevated risks of epidemic spread within these regions. Conclusions: Future efforts should comprehensively enhance prevention and control measures in high-risk areas of PTB in Chongqing to mitigate the incidence risk among students. Additionally, implementing proactive screening strategies and enhancing screening measures are crucial for early identification of student patients to prevent PTB outbreaks in schools.
Assuntos
Vigilância da População , Análise Espaço-Temporal , Estudantes , Tuberculose Pulmonar , Humanos , China/epidemiologia , Tuberculose Pulmonar/epidemiologia , Adolescente , Masculino , Estudantes/estatística & dados numéricos , Feminino , Incidência , Vigilância da População/métodos , Adulto Jovem , Análise por ConglomeradosRESUMO
BACKGROUND: The latent tuberculosis infection (LTBI) burden is still unclear in schoolchildren and adolescents in China. Previous study and daily surveillance data indicate a LTBI detection gap. The research objective was to evaluate the LTBI burden and detection gap among schoolchildren and adolescents in China. METHODS: A cross-sectional study was conducted among 69,667 schoolchildren and adolescents in Chongqing, China between September 2022 and December 2023 implemented by Chongqing Municipal Institute of Tuberculosis using tuberculin skin test (TST) and creation tuberculin skin test (C-TST). To evaluate the LTBI detection gap, the pulmonary tuberculosis (PTB) screening data implemented by Chongqing Municipal Institute of Tuberculosis have been compared with the data in 2021 implemented by community-level medical and health care institutions. RESULTS: The LTBI prevalence rate using TST and C-TST implemented by Chongqing Municipal Institute of Tuberculosis was 12.8% (95%CI, 12.5-13%) and 6.4% (95%CI, 6-6.8%) respectively. The LTBI prevalence rate by Chongqing Municipal Institute of Tuberculosis was 9.6% higher than that by community-level medical and health care institutions (χ2 = 2931.9, P < 0.001). CONCLUSIONS: The LTBI detection gap existed among schoolchildren and adolescents in Chongqing, and it also may exist in other similar countries and regions. National screening strategy needs improvement. Regular training and quality assurance could improve the performance of TST and C-TST and close the detection gap of LTBI.