Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986623

RESUMO

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Via de Sinalização Wnt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Bancos de Espécimes Biológicos , Heterogeneidade Genética , Dano ao DNA/genética , Interferons/metabolismo , Interferons/genética , Linhagem da Célula/genética
2.
Adv Mater ; 36(37): e2312948, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38813832

RESUMO

Colloidal quantum dots (QDs), as a class of 0D semiconductor materials, have generated widespread interest due to their adjustable band gap, exceptional color purity, near-unity quantum yield, and solution-processability. With decades of dedicated research, the potential applications of quantum dots have garnered significant recognition in both the academic and industrial communities. Furthermore, the related quantum dot light-emitting diodes (QLEDs) stand out as one of the most promising contenders for the next-generation display technologies. Although QD-based color conversion films are applied to improve the color gamut of existing display technologies, the broader application of QLED devices remains in its nascent stages, facing many challenges on the path to commercialization. This review encapsulates the historical discovery and subsequent research advancements in QD materials and their synthesis methods. Additionally, the working mechanisms and architectural design of QLED prototype devices are discussed. Furthermore, the review surveys the latest advancements of QLED devices within the display industry. The narrative concludes with an examination of the challenges and perspectives of QLED technology in the foreseeable future.

3.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565644

RESUMO

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Assuntos
Carcinoma Endometrioide , Hiperplasia Endometrial , Neoplasias do Endométrio , Preservação da Fertilidade , Proteogenômica , Humanos , Feminino , Progestinas/uso terapêutico , Antineoplásicos Hormonais , Hiperplasia Endometrial/tratamento farmacológico , Preservação da Fertilidade/métodos , Estudos Retrospectivos , Carcinoma Endometrioide/tratamento farmacológico , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia
4.
Nat Commun ; 15(1): 2089, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453961

RESUMO

Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.


Assuntos
Hipertermia Induzida , Neoplasias Ovarianas , Feminino , Humanos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Multiômica , Mitose , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia
5.
Adv Sci (Weinh) ; 11(12): e2302340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38229169

RESUMO

The lack of human-derived in vitro models that recapitulate cervical pre-cancerous lesions has been the bottleneck in researching human papillomavirus (HPV) infection-associated pre-cancerous lesions and cancers for a long time. Here, a long-term 3D organoid culture protocol for high-grade squamous intraepithelial lesions and cervical squamous cell carcinoma that stably recapitulates the two tissues of origin is described. Originating from human-derived samples, a small biobank of cervical pre-tumoroids and tumoroids that faithfully retains genomic and transcriptomic characteristics as well as the causative HPV genome is established. Cervical pre-tumoroids and tumoroids show differential responses to common chemotherapeutic agents and grow differently as xenografts in mice. By coculture organoid models with peripheral blood immune cells (PBMCs) stimulated by HPV antigenic peptides, it is illustrated that both organoid models respond differently to immunized PBMCs, supporting organoids as reliable and powerful tools for studying virus-specific T-cell responses and screening therapeutic HPV vaccines. In this study, a model of cervical pre-cancerous lesions containing HPV is established for the first time, overcoming the bottleneck of the current model of human cervical pre-cancerous lesions. This study establishes an experimental platform and biobanks for in vitro mechanistic research, therapeutic vaccine screening, and personalized treatment for HPV-related cervical diseases.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Neoplasias do Colo do Útero/patologia , Papillomaviridae/genética , Perfilação da Expressão Gênica
6.
Lancet Oncol ; 25(1): 76-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048802

RESUMO

BACKGROUND: Locally advanced cervical cancer constitutes around 37% of cervical cancer cases globally and has a poor prognosis due to limited therapeutic options. Immune checkpoint inhibitors in the neoadjuvant setting could address these challenges. We aimed to investigate the efficacy and safety of neoadjuvant chemo-immunotherapy for locally advanced cervical cancer. METHODS: In this single-arm, phase 2 trial, which was done across eight tertiary hospitals in China, we enrolled patients aged 18-70 years with untreated cervical cancer (IB3, IIA2, or IIB/IIIC1r with a tumour diameter ≥4 cm [International Federation of Gynecology and Obstetrics, 2018]) and an Eastern Cooperative Oncology Group performance status of 0 or 1. Eligible patients underwent one cycle of priming doublet chemotherapy (75-80 mg/m2 cisplatin, intravenously, plus 260 mg/m2 nab-paclitaxel, intravenously), followed by two cycles of a combination of chemotherapy (cisplatin plus nab-paclitaxel) on day 1 with camrelizumab (200 mg, intravenously) on day 2, with a 3-week interval between treatment cycles. Patients with stable disease or progressive disease received concurrent chemoradiotherapy, and patients with a complete response or partial response proceeded to radical surgery. The primary endpoint was the objective response rate, by independent central reviewer according to Response Evaluation Criteria in Solid Tumours, version 1.1. Activity and safety were analysed in patients who received at least one dose of camrelizumab. This study is registered with ClinicalTrials.gov, NCT04516616, and is ongoing. FINDINGS: Between Dec 1, 2020, and Feb 10, 2023, 85 patients were enrolled and all received at least one dose of camrelizumab. Median age was 51 years (IQR 46-57) and no data on race or ethnicity were collected. At data cutoff (April 30, 2023), median follow-up was 11·0 months (IQR 6·0-14·5). An objective response was noted in 83 (98% [95% CI 92-100]) patients, including 16 (19%) patients who had a complete response and 67 (79%) who had a partial response. The most common grade 3-4 treatment-related adverse events during neoadjuvant chemo-immunotherapy were lymphopenia (21 [25%] of 85), neutropenia (ten [12%]), and leukopenia (seven [8%]). No serious adverse events or treatment-related deaths occurred. INTERPRETATION: Neoadjuvant chemo-immunotherapy showed promising antitumour activity and a manageable adverse event profile in patients with locally advanced cervical cancer. The combination of neoadjuvant chemo-immunotherapy with radical surgery holds potential as a novel therapeutic approach for locally advanced cervical cancer. FUNDING: National Key Technology Research and Development Program of China and the National Clinical Research Center of Obstetrics and Gynecology.


Assuntos
Trombocitopenia , Neoplasias do Colo do Útero , Feminino , Humanos , Pessoa de Meia-Idade , Cisplatino/efeitos adversos , Terapia Neoadjuvante/efeitos adversos , Neoplasias do Colo do Útero/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Trombocitopenia/induzido quimicamente , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
7.
Nat Genet ; 55(12): 2175-2188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985817

RESUMO

Cervical squamous cell carcinoma (CSCC) exhibits a limited response to immune-checkpoint blockade. Here we conducted a multiomic analysis encompassing single-cell RNA sequencing, spatial transcriptomics and spatial proteomics, combined with genetic and pharmacological perturbations to systematically develop a high-resolution and spatially resolved map of intratumoral expression heterogeneity in CSCC. Three tumor states (epithelial-cytokeratin, epithelial-immune (Epi-Imm) and epithelial senescence), recapitulating different stages of squamous differentiation, showed distinct tumor immune microenvironments. Bidirectional interactions between epithelial-cytokeratin malignant cells and immunosuppressive cancer-associated fibroblasts form an immune exclusionary microenvironment through transforming growth factor ß pathway signaling mediated by FABP5. In Epi-Imm tumors, malignant cells interact with natural killer and T cells through interferon signaling. Preliminary analysis of samples from a cervical cancer clinical trial ( NCT04516616 ) demonstrated neoadjuvant chemotherapy induces a state transition to Epi-Imm, which correlates with pathological complete remission following treatment with immune-checkpoint blockade. These findings deepen the understanding of cellular state diversity in CSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias do Colo do Útero/genética , Inibidores de Checkpoint Imunológico , Relevância Clínica , Ecossistema , Multiômica , Queratinas/metabolismo , Queratinas/uso terapêutico , Microambiente Tumoral/genética , Proteínas de Ligação a Ácido Graxo/uso terapêutico
8.
Cell Biosci ; 13(1): 178, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759323

RESUMO

BACKGROUND: Although the clinical application of PARP inhibitors has brought hope to ovarian cancer, the problem of its resistance has become increasingly prominent. Therefore, clinical experts have been focused on finding specific indicators and therapeutic targets that can be used for resistance monitoring of PARP inhibitors. RESULTS: By cfDNA detecting during Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, we found the presence of MRE11:p.K464R mutation was strongly associated with acquired Olaparib resistance. Structural analysis revealed that the MRE11:p.K464R mutation is situated at a critical site where the MRE11 protein interacts with other biomolecules, leading to potential structural and functional abnormalities of MRE11 protein. Functionally, MRE11:p.K464R mutation enhanced the tolerance of Olaparib by reducing the DNA damage. Mechanistically, MRE11:p.K464R mutation improved the efficiency of DNA damage repair and induce Olaparib resistance by enhancing its binding activity with the interacting proteins (including RAD50 and RPS3). Among them, the enhanced binding of MRE11:p.K464R mutation to RAD50/RPS3 facilitated non-homologous end joining (NHEJ) repair in tumor cells, thereby expanding the scope of research into acquired resistance to PARP inhibitors. CONCLUSIONS: Our findings provide a theoretical basis for MRE11:p.K464R mutation as a specific indicator of resistance monitoring in Olaparib treatment, and the exploration of its resistance mechanism provides a novel insights for the formulation of combination ther therapies after Olaparib resistance.

9.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072347

RESUMO

BACKGROUND: Mismatch repair deficiency (dMMR) is a well-recognized biomarker for response to immune checkpoint blockade (ICB). Strategies to convert MMR-proficient (pMMR) to dMMR phenotype with the goal of sensitizing tumors to ICB are highly sought. The combination of bromodomain containing 4 (BRD4) inhibition and ICB provides a promising antitumor effect. However, the mechanisms underlying remain unknown. Here, we identify that BRD4 inhibition induces a persistent dMMR phenotype in cancers. METHODS: We confirmed the correlation between BRD4 and mismatch repair (MMR) by the bioinformatic analysis on The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium data, and the statistical analysis on immunohistochemistry (IHC) scores of ovarian cancer specimens. The MMR genes (MLH1,MSH2,MSH6,PMS2) were measured by quantitative reverse transcription PCR, western blot, and IHC. The MMR status was confirmed by whole exome sequencing, RNA sequencing, MMR assay and hypoxanthine-guanine phosphoribosyl transferase gene mutation assay. The BRD4i AZD5153 resistant models were induced both in vitro and in vivo. The transcriptional effects of BRD4 on MMR genes were investigated by chromatin immunoprecipitation among cell lines and data from the Cistrome Data Browser. The therapeutic response to ICB was testified in vivo. The tumor immune microenvironment markers, such as CD4, CD8, TIM-3, FOXP3, were measured by flow cytometry. RESULTS: We identified the positive correlation between BRD4 and MMR genes in transcriptional and translational aspects. Also, the inhibition of BRD4 transcriptionally reduced MMR genes expression, resulting in dMMR status and elevated mutation loads. Furthermore, prolonged exposure to AZD5153 promoted a persistent dMMR signature both in vitro and in vivo, enhancing tumor immunogenicity, and increased sensitivity to α-programmed death ligand-1 therapy despite the acquired drug resistance. CONCLUSIONS: We demonstrated that BRD4 inhibition suppressed expression of genes critical to MMR, dampened MMR, and increased dMMR mutation signatures both in vitro and in vivo, sensitizing pMMR tumors to ICB. Importantly, even in BRD4 inhibitors (BRD4i)-resistant tumor models, the effects of BRD4i on MMR function were maintained rendering tumors sensitive to ICB. Together, these data identified a strategy to induce dMMR in pMMR tumors and further, indicated that BRD4i sensitive and resistant tumors could benefit from immunotherapy.


Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Inibidores de Checkpoint Imunológico , Reparo de Erro de Pareamento de DNA/genética , Fatores de Transcrição/genética , Proteômica , Neoplasias Colorretais/patologia , Mutação , Microambiente Tumoral , Proteínas de Ciclo Celular/genética
10.
J Cell Mol Med ; 27(5): 634-649, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753396

RESUMO

Ovarian cancer has the highest facility rate among gynaecological tumours. Current therapies including PARP inhibitors have a defect that ovarian tumour is easy to recurrent and become resistant to therapy. To solve this problem, we found that BRD4 inhibitor AZD5153 and PARP inhibitor olaparib had a widespread synergistic effect in multiple models with different gene backgrounds. AZD5153 sensitizes cells to olaparib and reverses the acquired resistance by down-regulating PTEN expression levels to destabilize hereditary materials. In this study, we used the following multiple ovarian cancer models PDX, PDO and 3D/2D cell lines to elucidate the co-effect of AZD5153 and olaparib in vivo and in vitro. The similar results of these models further proved that the mechanism identified was consistent with the biological process occurring in ovarian cancer patients after drug treatment. This consistency between the results of different models suggests the possibility of translating these laboratory research findings into clinical studies towards developing treatments.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Proteínas de Ciclo Celular/genética
11.
Cell Genom ; 3(1): 100211, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777180

RESUMO

Cervical cancer (CC) that is caused by high-risk human papillomavirus (HPV) remains a significant public health problem worldwide. HPV integration sites can be silent or actively transcribed, leading to the production of viral-host fusion transcripts. Herein, we demonstrate that only productive HPV integration sites were nonrandomly distributed across both viral and host genomes, suggesting that productive integration sites are under selection and likely to contribute to CC pathophysiology. Furthermore, using large-scale, multi-omics (clinical, genomic, transcriptional, proteomic, phosphoproteomic, and single-cell) data, we demonstrate that tumors with productive HPV integration are associated with higher E6/E7 proteins and enhanced tumor aggressiveness and immunoevasion. Importantly, productive HPV integration increases from carcinoma in situ to advanced disease. This study improves our understanding of the functional consequences of HPV fusion transcripts on the biology and pathophysiology of HPV-driven CCs, suggesting that productive HPV integration should be evaluated as an indicator of high risk for progression to aggressive cancers.

12.
Acta Biomater ; 157: 428-441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549633

RESUMO

Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Sistemas de Liberação de Fármacos por Nanopartículas/efeitos adversos , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral
13.
Cell Rep Med ; 3(12): 100856, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543113

RESUMO

Tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, represent a favorable prognostic factor in high-grade serous ovarian cancer (HGSOC) and other tumor lineages. Here, we analyze the spatial heterogeneity of different TIL subtypes in HGSOC. We integrated RNA sequencing, whole-genome sequencing, bulk T cell receptor (TCR) sequencing, as well as single-cell RNA/TCR sequencing to investigate the characteristics and differential composition of TILs across different HGSOC sites. Two immune "cold" patterns in ovarian cancer are identified: (1) ovarian lesions with low infiltration of mainly dysfunctional T cells and immunosuppressive Treg cells and (2) omental lesions infiltrated with non-tumor-specific bystander cells. Exhausted CD8 T cells that are preferentially enriched in ovarian tumors exhibit evidence for expansion and cytotoxic activity. Inherent tumor immune microenvironment characteristics appear to be the main contributor to the spatial differences in TIL status. The landscape of spatial heterogeneity of TILs may inform potential strategies for therapeutic manipulation in HGSOC.


Assuntos
Cistos Ovarianos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Multiômica , Receptores de Antígenos de Linfócitos T/genética , Microambiente Tumoral/genética
14.
J Exp Clin Cancer Res ; 41(1): 277, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114548

RESUMO

Ovarian cancer (OC) is a heterogeneous malignancy with various etiology, histopathology, and biological feature. Despite accumulating understanding of OC in the post-genomic era, the preclinical knowledge still undergoes limited translation from bench to beside, and the prognosis of ovarian cancer has remained dismal over the past 30 years. Henceforth, reliable preclinical model systems are warranted to bridge the gap between laboratory experiments and clinical practice. In this review, we discuss the status quo of ovarian cancer preclinical models which includes conventional cell line models, patient-derived xenografts (PDXs), patient-derived organoids (PDOs), patient-derived explants (PDEs), and genetically engineered mouse models (GEMMs). Each model has its own strengths and drawbacks. We focus on the potentials and challenges of using these valuable tools, either alone or in combination, to interrogate critical issues with OC.


Assuntos
Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Organoides , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
15.
Nat Nanotechnol ; 17(9): 906-907, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953538
16.
EPMA J ; 13(3): 487-498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35762010

RESUMO

Purpose: We investigated whether ovarian cancer could alter the genital microbiota in a specific way with clinical values. Furthermore, we proposed how such changes could be envisioned in a paradigm of predictive, preventive, and personalized medicine (PPPM). Methods: The samples were collected using cotton swabs from the cervical, uterine cavity, fallopian tubes, and ovaries of patients subjected to the surgical procedures for the malignant/benign lesions. All samples were then analyzed by metagenomic shotgun sequencing. The distribution patterns and characteristics of the microbiota in the reproductive tract of subjects were analyzed and were interpreted in relation to the clinical outcomes of the subjects. Results: While the ovarian cancer was able to alter the genital microbiota, the bacteria were the dominant microorganisms in all samples across all cohorts in the study (median 99%). The microbiota of the upper female reproductive tract were mainly from the cervical, identified by low bacterial biomass and high bacterial diversity. Ovarian cancer had a distinct microbiota signature. The tubal ligation affects its microbial distribution. There were no different species on the surface of platinum-sensitive ovarian tissues compared to samples from platinum-resistant patients. Conclusion: The ovarian cancer-induced changes in microbiota magnify the potential of microbiota as a biotherapeutic modality in the treatment of ovarian cancer in this study and very likely for several malignancies and other conditions. Our findings demonstrated, for the first time, that microbiota could be dissected and applied in more specific fashion based on a predictive, preventive, and personalized medicine (PPPM) model in the treatment of ovarian cancer. Utilizing microbiota portfolio in a PPPM system in ovarian cancer would provide a unique opportunity to a clinically intelligent and novel approach in the treatment of ovarian cancer as well as several other conditions and malignancies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00286-1.

17.
Cancer Sci ; 113(8): 2849-2861, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661486

RESUMO

Although resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) has gradually become a major challenge in the maintenance therapy for high-grade serous ovarian carcinoma (HGSOC), there are no universal indicators for resistance monitoring in patients. A key resistance mechanism to PARPi is the restoration of homologous recombination repair (HRR), including BRCA reversion mutations and changes in DNA damage repair proteins. To explore mutation profiles associated with PARPi resistance, we undertook targeted 42-gene deep sequencing of circulating cell-free DNA (cfDNA) extracted from HGSOC patients pre- and post-treatment with olaparib maintenance therapy. We found that pathogenic germline mutations in the HRR pathway, including BRCA1/2, were strongly associated with improved clinical outcomes, and newly acquired MRE11A mutations significantly shortened the progression-free survival (PFS) of patients. Furthermore, dynamic fluctuations of somatic mutation sites in CHEK2:p.K373E and CHEK2:p.R406H can be used for evaluating the therapeutic efficacy of patients. MRE11A:p.K464R might be a vital driving factor of olaparib resistance, as patients with newly acquired MRE11A:p.K464R in post-treatment cfDNA had significantly shorter PFS than those without it. These findings provide potential noninvasive biomarkers for efficacy evaluation and resistance monitoring of olaparib treatment, and lay the foundation for developing combination treatment after olaparib resistance.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Ovarianas , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
18.
Cancer Lett ; 528: 31-44, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942306

RESUMO

The CDK4/6 inhibitor, palbociclib has recently entered clinic-trial stage for breast cancer treatment. However, translating its efficacy to other solid tumors has been challenging, especially for aggressive solid tumors. We found that the effect of palbociclib as a single agent was limited due to primary and acquired resistance in multiple ovarian cancer (OC) models. Among these, patient-derived organoid and xenograft models are two most representative models of drug responsiveness in patients with OC. In preclinical models, this study demonstrated that activated MAPK/PI3K-AKT pathway and cell cycle-related proteins induced the resistance to palbociclib, which was overcome by the addition of the bromodomain protein 4 (BRD4) inhibitor AZD5153. Moreover, this study revealed that AZD5153 and palbociclib had a synergistic lethal effect on inducing the cell cycle arrest and increasing apoptosis, even in RB-deficient cell lines. Based on these results, it is anticipated that this class of drugs, including AZD5153, which inhibit the cell cycle-related protein and MAPK/PI3K-AKT pathway, will exhibit synergistic effects with palbociclib in OC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Ciclo Celular/efeitos dos fármacos , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/uso terapêutico , Piridazinas/uso terapêutico , Piridinas/uso terapêutico , Animais , Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Feminino , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Camundongos , Piperazinas/farmacologia , Pirazóis/farmacologia , Piridazinas/farmacologia , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Aging (Albany NY) ; 13(23): 24943-24962, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862879

RESUMO

Ongoing pandemic and potential resurgence of Coronavirus disease 2019 (COVID-19) has prompted urgent efforts to investigate the immunological memory of convalescent patients, especially in patients with active cancers. Here we performed single-cell RNA sequencing in peripheral blood samples of 3 healthy donors (HDs), 4 COVID-19 patients (Covs) and 4 COVID-19 patients with active gynecological tumor (TCs) pre- and post- anti-tumor treatment. All Covs patients had recovered from their acute infection. Interestingly, the molecular features of PBMCs in TCs are similar to that in Covs, suggesting that convalescent COVID-19 with gynecologic tumors do not have major immunological changes and may be protected against reinfection similar to COVID-19 patients without tumors. Moreover, the chemotherapy given to these patients mainly caused neutropenia, while having little effect on the proportion and functional phenotype of T and B cells, and T cell clonal expansion. Notably, anti-PD-L1 treatment massively increased cytotoxic scores of NK cells, and T cells, and facilitated clonal expansion of T cells in these patients. It is likely that T cells could protect patients from SARS-CoV-2 virus reinfection and anti-PD-L1 treatment can enhance the anti-viral activity of the T cells.


Assuntos
COVID-19/complicações , Neoplasias dos Genitais Femininos/complicações , Neoplasias dos Genitais Femininos/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Anticorpos Antivirais/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Neoplasias dos Genitais Femininos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
20.
Nat Commun ; 12(1): 4543, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315889

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.


Assuntos
COVID-19/genética , COVID-19/metabolismo , Estado Terminal , Genômica/métodos , Humanos , Lipidômica/métodos , Metabolômica/métodos , Neutrófilos/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA