Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38559498

RESUMO

Objective: Adolescence is a high-risk period for traffic injury. One factor that may impact adolescent safety in traffic is the presence of peers. We conducted a quasi-experimental research study to examine the impact of peer presence, peer familiarity, and peer group size on adolescent pedestrian risk-taking intentions in both sidewalk and street-crossing settings. Methods: 607 students aged 12-18 years from Nantong city, China, completed a questionnaire that presented 20 traffic scenarios. The scenarios varied based on a 3 (peer group size: no peer vs. one peer vs. multiple peers) x 2 (peer familiarity: familiar vs. unfamiliar) x 2 (traffic setting: crossing the street vs. walking on the roadside) experimental design. Adolescents' responses indicated safer vs riskier intentions in each situation. Results: Results found that: (1) Adolescents were safer when walking on the sidewalk than when crossing the street; (2) Whether crossing the street or walking on the sidewalk, adolescents' behavioral intentions were safer when there were peers present than when there were no peers present; (3) Adolescents' safety tended to be higher overall with unfamiliar peers than with familiar peers; (4) Adolescents were less safe when crossing the street with familiar peer(s) than with unfamiliar peer(s), but no differences emerged when walking on the sidewalk. Conclusions: Adolescents report safer behavior when walking with a peer or peers compared with walking alone. Familiar peers reduce adolescents' safety of behavior intentions in traffic, especially when crossing the street.

2.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447391

RESUMO

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Assuntos
Células da Granulosa , Via de Sinalização Hippo , Feminino , Animais , Humanos , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose , Mamíferos/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/metabolismo
3.
Small ; : e2311163, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308114

RESUMO

Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.

4.
Cell Signal ; 116: 111027, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38171389

RESUMO

Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML) patients usually have very poor prognoses, and drug-resistance is one of the major limiting factors. In this study, we aimed to explore the functions of Transforming Growth Factor-ß1 (TGFB1) in AML drug-resistance. First, TGFB1 levels in serum and bone marrow are higher in R/R patients compared with newly diagnosed patients, this phenomenon could be due to different sources of secreted TGFB1 according to immunohistochemistry of marrow biopsies. Similarly, TGFB1 expression in AML drug-resistant cell lines is higher than that in their parental cell lines, and blocking the TGFB signaling pathway by specific inhibitors decreased resistance to chemotherapeutic agents. On the other hand, exogenous TGFB1 can also promote AML parental cells senescence and chemotherapy resistance. Next, we found SOX4 level is upregulated in drug-resistant cells, and parental cells treated with exogenous TGFB1 induced upregulation of SOX4 levels. Interference of SOX4 expression by siRNA diminished the TGFB1-induced sensitivity to chemotherapeutic agents. Finally, we conduct metabolomic analysis and find Alanine, aspartate and glutamate metabolism pathway, and Glycerophospholipid metabolism pathway are decreased after inhibiting TGFB signaling pathway or interfering SOX4 expression. This study concludes that TGFB1 level in R/R AML patients and drug-resistant strains is significantly increased. Blocking the TGFB signaling pathway can enhance the chemosensitivity of drug-resistant cells by suppressing SOX4 expression and metabolic reprogramming.


Assuntos
Leucemia Mieloide Aguda , Fator de Crescimento Transformador beta1 , Humanos , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Transdução de Sinais , Alanina , Fatores de Transcrição SOXC
5.
Sleep ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38173348

RESUMO

STUDY OBJECTIVES: Growing evidences have documented various abnormalities of the white matter bundles in people with narcolepsy. We sought to evaluate topological properties of brain structural networks, and their association with symptoms and neuropathophysiological features in people with narcolepsy. METHODS: Diffusion tensor imaging (DTI) was conducted for people with narcolepsy (n = 30) and matched healthy controls as well as symptoms assessment. Structural connectivity for each participant was generated to analyze global and regional topological properties and their correlations with narcoleptic features. Further human brain transcriptome was extracted and spatially registered for connectivity vulnerability. Genetic functional enrichment analysis was performed and further clarified using in vivo emission computed tomography data. RESULTS: A wide and dramatic decrease in structural connectivities was observed in people with narcolepsy, with descending network degree and global efficiency. These metrics were not only correlated with sleep latency and awakening features, but also reflected alterations of sleep macrostructure in people with narcolepsy. Network-based statistics identified a small hyperenhanced subnetwork of cingulate gyrus that was closely related to rapid eye movement sleep behavior disorder (RBD) in narcolepsy. Further imaging genetics analysis suggested glutamatergic signatures were responsible for the preferential vulnerability of connectivity alterations in people with narcolepsy, while additional PET/SPECT data verified that structural alteration was significantly correlated with metabotropic glutamate receptor 5 (mGlutR5) and N-methyl-D-aspartate receptor (NMDA). CONCLUSIONS: People with narcolepsy endured a remarkable decrease in the structural architecture, which was not only be closely related to narcolepsy symptoms but also glutamatergic signatures.

6.
Clin Exp Med ; 24(1): 28, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289482

RESUMO

Serine/arginine repetitive matrix 2 (SRRM2) has been implicated in tumorigenesis, cancer development, and drug resistance through aberrant splicing; however, its correlation with multiple myeloma (MM) has not been reported. We investigated the potential of SRRM2 as a biomarker and immunotherapeutic target in MM by examining its expression in MM cells using flow cytometry. Our study included 95 patients with plasma cell disease, including 80 MM cases, and we detected SRRM2 expression on plasma cells and normal blood cells to analyze its relationship with clinical profiles. We found widespread positive expression of SRRM2 on plasma cells with little expression on normal blood cells, and its expression on abnormal plasma cells was higher than that on normal plasma cells. Comparative analysis with clinical data suggests that SRRM2 expression on plasma cells correlates with MM treatment response. MM patients with high SRRM2 expression had higher levels of serum ß2-mg and LDH, ISS staging, and plasma cell infiltration, as well as high-risk mSMART 3.0 stratification and cytogenetic abnormalities, particularly 1q21 amplification. In patients with previous MM, high SRRM2 expression on plasma cells was associated with higher plasma cell infiltration, high-risk mSMART 3.0 risk stratification, cytogenetic abnormalities, more relapses, and fewer autologous stem cell transplant treatments. In summary, SRRM2 may serve as a novel biomarker and immunotherapeutic target for MM. Its expression level on plasma cells can help in risk stratification of MM and monitoring of treatment response.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Citometria de Fluxo , Imunoterapia , Biomarcadores , Aberrações Cromossômicas , Proteínas de Ligação a RNA
7.
Bioorg Med Chem ; 96: 117534, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952262

RESUMO

Acquired drug resistance occurred in the treatment of non-small-cell lung cancer is a persistent challenge, especially in EGFR mutant type. In this study, we present design, synthesis and biological evaluation of novel quinazoline and pyrrolopyrimidine derivatives that simultaneously occupy the orthosteric and allosteric sites of EGFR. Among them, compound A-7 was confirmed as a potential EGFRL858R/T790M/C797S and EGFRDel19/T790M/C797S inhibitor. Docking study indicated that compound A-7 could simultaneously occupy two binding sites of EGFR and form three key H-bonds with the residues Met793, Lys745 and Met766 in two regions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB , Sítio Alostérico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/química , Resistencia a Medicamentos Antineoplásicos
8.
Mater Horiz ; 10(11): 4930-4939, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37609896

RESUMO

Recently, it was reported that an in-plane graphene (G)/hexagonal boron nitride (h-BN) (G/h-BN) heterostructure provided the catalytic activity for H2O2 synthesis by the 2 e- oxygen reduction reaction (ORR). However, there are few reports on the vertically stacked G/h-BN heterostructure, which refers to the stacking of graphene domains on the surface of h-BN. Herein, a simulated chemical vapor deposition method is proposed for fabricating a heterostructure of abundant vertically stacked G/h-BN by in situ growing graphene quantum dots (GQDs) on porous h-BN sheets. The performance of our vertically stacked heterostructure catalyst is superior to that of reported carbon-based electrocatalysts under an alkaline environment, with an H2O2 selectivity of 90-99% in a wide potential range (0.35 V-0.7 V vs. RHE), over 90% faradaic efficiency, and high mass activity of 1167 mmol gcatalyst-1 h-1. The experimental results and density functional theory (DFT) simulation verified that the vertically stacked heterostructure exhibits an excellent catalytic performance for the 2 e- ORR, and the edge B atoms in the B-centered AB stacking model are the most active catalytic sites. This research adequately demonstrates the promising catalytic activity of the vertically stacked G/h-BN heterostructure and provides a facile route for fabricating other vertically stacked heterostructures.

9.
Medicine (Baltimore) ; 102(31): e34189, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37543759

RESUMO

Lymphatic metastasis (LM) is a significant mechanism for the spread of esophageal cancer (EC) and predicts the poor prognosis of EC patients. This research aimed to assess the survival of patients with LM from EC by developing a nomogram. In this retrospective study, EC patients with LM from 2004 to 2015 in the Surveillance, Epidemiology, and End Results (SEER) database were divided by year of diagnosis into a training cohort and a validation cohort. Univariate and multivariate Cox regression analyses were employed to determine the prognostic factors of LM, and a nomogram was constructed. The discrimination and calibration of the nomogram were compared by the C-index, area under the curve value, and calibration plots. The survival time difference was compared using Kaplan-Meier curves. A total of 11,695 patients with EC were included in this analysis. LM occurred in 56.5% (n = 6614) of EC patients. In the post-propensity score matching (PSM) cohort, patients with LM had significantly lower median overall survival (OS) than those without LM. Multivariate Cox regression was used to identify the eleven independent prognostic factors. The C-index was 0.709 in both the training and test sets, revealing the good predictive performance of the nomogram. Based on the results of calibration plots and the receiver operating characteristic (ROC) curve, we demonstrate the great performance of the prognostic model. The survival time of EC patients with LM was remarkably lower than that of EC patients without LM. The nomogram model established in this study can precisely predict the survival of EC patients with LM.


Assuntos
Neoplasias Esofágicas , Nomogramas , Humanos , Metástase Linfática , Estudos Retrospectivos , Calibragem , Programa de SEER
10.
ACS Appl Mater Interfaces ; 15(31): 37593-37601, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494594

RESUMO

Carbon material is considered a promising electrocatalyst for the CO2 reduction reaction (CO2RR); especially, N-doped carbon material shows high CO Faradic efficiency (FECO) when using pyridinic N species as the active site. However, in the past decade, more efforts were focused on the preparation of various carbon nanostructures containing abundant pyridinic N species and few researchers studied the electronic structure modulation of the pyridinic N site. The curvature of the carbon substrate is an easily controllable parameter for modulating the local electronic environment of catalytic sites. In this research, carbon nanotubes (CNTs) with different diameters are applied to modulate the electronic environment of pyridinic N by the curvature effect. The pyridinic N sites doped on CNTs with the average curvature of 0.04 show almost 100% FECO at the current density of 3 mA cm-2 at -0.6 V vs RHE and 91% FECO retention after 12 h test, which is superior to most of the carbon-based electrocatalysts. As demonstrated by density functional theory simulation, the pyridinic N site forms a strong local electric field around the nearby C active site and protrudes out of the curved CNT surface like a tip, which remarkably enriches the protons around the adsorbed CO2 molecule.

11.
Front Microbiol ; 14: 1171618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152749

RESUMO

The secretory proteome plays an important role in the pathogenesis of phytopathogenic fungi. However, the relationship between the large-scale secretome of phytopathogenic fungi and their lifestyle is not fully understood. In the present study, the secretomes of 150 plant pathogenic fungi were predicted and the characteristics associated with different lifestyles were investigated. In total, 94,974 secreted proteins (SPs) were predicted from these fungi. The number of the SPs ranged from 64 to 1,662. Among these fungi, hemibiotrophic fungi had the highest number (average of 970) and proportion (7.1%) of SPs. Functional annotation showed that hemibiotrophic and necrotroph fungi, differ from biotrophic and symbiotic fungi, contained much more carbohydrate enzymes, especially polysaccharide lyases and carbohydrate esterases. Furthermore, the core and lifestyle-specific SPs orthogroups were identified. Twenty-seven core orthogroups contained 16% of the total SPs and their motif function annotation was represented by serine carboxypeptidase, carboxylesterase and asparaginase. In contrast, 97 lifestyle-specific orthogroups contained only 1% of the total SPs, with diverse functions such as PAN_AP in hemibiotroph-specific and flavin monooxygenases in necrotroph-specific. Moreover, obligate biotrophic fungi had the largest number of effectors (average of 150), followed by hemibiotrophic fungi (average of 120). Among these effectors, 4,155 had known functional annotation and pectin lyase had the highest proportion in the functionally annotated effectors. In addition, 32 sets of RNA-Seq data on pathogen-host interactions were collected and the expression levels of SPs were higher than that of non-SPs, and the expression level of effector genes was higher in biotrophic and hemibiotrophic fungi than in necrotrophic fungi, while secretase genes were highly expressed in necrotrophic fungi. Finally, the secretory activity of five predicted SPs from Setosphearia turcica was experimentally verified. In conclusion, our results provide a foundation for the study of pathogen-host interaction and help us to understand the fungal lifestyle adaptation.

12.
Clin Exp Med ; 23(8): 4527-4538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37233879

RESUMO

Acute myeloid leukemia (AML) is one of the most common malignant and aggressive hematologic tumors, and risk stratification is indispensable to ensure proper treatment. But immune-related long noncoding RNAs (ir-lncRNAs) pairs prognostic risk models used to stratify AML have yet to be reported. In this study, we established a prognostic risk model based on eight ir-lncRNAs pairs using LASSO-penalized Cox regression analysis and successfully validated the model in an independent cohort. According to risk scores, patients were divided into a high-risk group and a low-risk group. High-risk patients presented more tumor mutation frequency and higher expression of human leukocyte antigen (HLA)-related genes and immune checkpoint molecules. Gene Set Enrichment Analysis (GSEA) indicated that the transforming growth factors ß (TGFß) pathway was activated in the high-risk group; meanwhile, we found that TGFß1 mRNA levels were significantly elevated in AML patients and correlated with poor prognosis, which is closely related to drug resistance. Consistently, in vitro studies found that exogenous TGFß1 can protect AML cells from chemotherapy-induced apoptosis. Collectively, we developed an ir-lncRNA prognostic model that helps predict the prognosis of AML patients and provides valuable information about their response to immune checkpoint inhibitors, and we found that increased TGFß1 levels resulting in chemoresistance may be one of the leading causes of treatment failure in high-risk AML patients.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Humanos , Prognóstico , RNA Longo não Codificante/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fatores de Risco , Projetos de Pesquisa
13.
J Sci Food Agric ; 103(13): 6595-6604, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37245213

RESUMO

BACKGROUND: In recent years, there has been an increasing demand for plant-based cheese analogues, however, the protein content of plant-based cheeses currently on the market is generally low and cannot meet the nutritional needs of consumers. RESULTS: Based on the ideal value similarity method (TOPSIS) analysis the best recipe for plant-based cheese was 15% tapioca starch, 20% soy protein isolate, 7% gelatine as a quality enhancer and 15% coconut oil. The protein content of this plant-based cheese was170.1 g kg-1 , which was close to commercial dairy-based cheese and significantly higher than commercial plant-based cheese, The fat content was 114.7 g kg-1 , lower than that of commercial dairy-based cheese. The rheology properties show that the viscoelasticity of the plant-based cheese is higher than that of dairy-based cheese and commercial plant-based. The microstructure results show that the type and content of protein has a significant impact on its microstructure. The Fourier-transform infrared (FTIR) spectrum of the microstructure shows a characteristic value at 1700 cm-1 , because the starch was heated and leached to form a complex with lauric acid under the action of hydrogen bond. It can be inferred that in the interaction between plant-based cheese raw materials, fatty acids serve as a bridge between starch and protein. COUCLUSION: This study described the formula of plant-based cheese and the interaction mechanism between the ingredients, providing a basis for the development of subsequent plant-based cheese related products. © 2023 Society of Chemical Industry.


Assuntos
Queijo , Queijo/análise , Proteínas , Reologia , Viscosidade , Amido
14.
Adv Mater ; 35(17): e2209086, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780921

RESUMO

Carbon materials are considered promising 2/4 e- oxygen reduction reaction (ORR) electrocatalysts for synthesizing H2 O2 /H2 O via regulating heteroatom dopants and functionalization. Here, various doped and functionalized graphene quantum dots (GQDs) are designed to reveal the crucial active sites of carbon materials for ORR to produce H2 O2 . Density functional theory (DFT) calculations predict that the edge structure involving edge N, B dopant pairs and further OH functionalization to the B (NBOH) is an active center for 2e- ORR. To verify the above predication, GQDs with an enriched density of NBOH (NBO-GQDs) are designed and synthesized by the hydrothermal reaction of NH2 edge-functionalized GQDs with H3 BO3 forming six-member heterocycle containing the NBOH structure. When dispersed on conductive carbon substrates, the NBO-GQDs show H2 O2 selectivity of over 90% at 0.7 -0.8 V versus reversible hydrogen electrode in the alkaline solution in a rotating ring-disk electrode setup. The selectivity retains 90% of the initial value after 12 h stability test. In a flow cell setup, the H2 O2 production rate is up to 709 mmol gcatalyst -1  h-1 , superior to most reported carbon- and metal-based electrocatalysts. This work provides molecular insight into the design and formulation of highly efficient carbon-based catalysts for sustainable H2 O2 production.

15.
J Enzyme Inhib Med Chem ; 37(1): 2334-2347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36043496

RESUMO

Based on the obtained SARs, further structural optimisation of compound BC2021-104511-15i was conducted in this investigation, and totally ten novel quinoline derivates were designed, synthesised and optimised for biological activity. Among them, compound 10a displayed significant in vitro anticancer activity against COLO 205 cells with an IC50 value of 0.11 µM which was over 90-fold more potent than that of Regorafenib (IC50>10.0 µM) and Fruquintinib (IC50>10.0 µM). Furthermore, compound 10a exhibited over 90-fold selectivity towards COLO 205 relative to human normal colorectal mucosa epithelial cell FHC cells. Flow cytometry study demonstrated that compound 10a could induce apoptosis in COLO 205 cells, however, it could not induce cell cycle arrest in COLO 205 cells. The results of preliminary kinase profile study showed that compound 10a was a potential HGFR and MST1R dual inhibitor, with IC50 values of 0.11 µM and 0.045 µM, respectively.


Assuntos
Antineoplásicos , Neoplasias , Quinolinas , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Quinolinas/farmacologia , Relação Estrutura-Atividade , Ureia/farmacologia
16.
Chemistry ; 28(60): e202201996, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35853835

RESUMO

Oxygen species functionalized graphene (O-G) is an effective electrocatalyst for electrochemically synthesizing hydrogen peroxide (H2 O2 ) by a 2 e- oxygen reduction reaction (ORR). The type of oxygen species and degree of carbon crystallinity in O-G are two key factors for the high catalytic performance of the 2 e- ORR. However, the general preparing method of O-G by the precursor of graphite has the disadvantages of consuming massive strong oxidant and washing water. Herein, the biomass-based graphene with tunable oxygen species is rapidly fabricated by a CO2 laser. In a flow cell setup, the laser-induced graphene (LIG) with abundant active oxygen species and graphene structure shows high catalytic performance including high Faraday efficiency (over 78 %) and high mass activity (814 mmolgcatalyst -1  h-1 ), superior to most of the reported carbon-based electrocatalysts. Density function theory demonstrates the meta-C atoms at nearby C-O, O-C=O species are the key catalytic sites. Therefore, we develop one facile method to rapidly convert biomass to graphene electrocatalyst used for H2 O2 synthesis.

17.
Eur J Med Chem ; 239: 114561, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763868

RESUMO

In our previous study, 1-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)-3-(4-((7-(3-(4-ethylpiperazin-1-yl)propoxy)-6-methoxyquinolin-4-yl)oxy)-3,5-difluorophenyl)urea (1) was obtained as a potent tyrosine kinase inhibitor. Further structural optimization was performed in this investigation, and a series of novel quinoline derivates were designed, synthesized and evaluated for their biological activity. Among them, compound 8m possessed nanomolar c-Met and Ron inhibitory activity, with IC50 values of 4.32 nM and 2.39 nM, respectively. Kinase profile study demonstrated that it could also inhibit ABL, PDGFRß, AXL, RET, and FLT3 with submicromolar potency. It also exhibited moderate to excellent cytotoxic activity against different types of human cancer cell lines, especially against COLO 205 cells (IC50 = 0.035 µM) which was remarkably superior to that of Cabozantinib (IC50 = 6.6 µM) and Fruquintinib (IC50 > 10.0 µM). Compared to ( ± )-8m, isomer (S)-8m and (R)-8m showed similar kinase inhibitory activity against c-Met/RON and in vitro anticancer activity against COLO 205 cells. Differently, compound (S)-8m showed an over 238-fold selectivity toward COLO 205 (IC50 = 0.042 µM) cells to FHC cells (IC50 > 10.0 µM), which indicated its low cytotoxicity against human normal tissue cells. Flow cytometry study demonstrated that compound (S)-8m could significantly induce apoptosis in COLO 205 cells in a dose-dependent manner. Cell cycle arrest assays showed that compound (S)-8m could not arrest the cell-cycle progression due to the massive dead cells.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Ureia/farmacologia
18.
Exp Dermatol ; 31(8): 1220-1233, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35427425

RESUMO

Melanoma belongs to cutaneous malignancy. Long non-coding RNAs (lncRNAs) have been suggested as crucial effectors in modulating progression of different malignancies, including melanoma. However, novel lncRNA solute carrier organic anion transporter family member 4A1 antisense RNA 1 (SLCO4A1-AS1) was not reported in melanoma. Herein, SLCO4A1-AS1 was detected to be up-regulated in melanoma cell lines compared with human normal melanocytes (HEM-a). Additionally, proliferation, migration and invasion of melanoma cells were weakened but apoptosis was facilitated due to SLCO4A1-AS1 down-regulation. Subsequently, miR-1306-5p was revealed to be sequestered by SLCO4A1-AS1 and down-regulated in melanoma cells. Functional assays further sustained that overexpressed miR-1306-5p had inhibitory influence on proliferation, migration and invasion and promoting influence on apoptosis of melanoma cells. Polycomb group ring finger 2 (PCGF2) was predicted as the downstream of miR-1306-5p, displaying aberrantly high expression in melanoma cell lines. Furthermore, PCGF2 expression was negatively modulated by miR-1306-5p and positively regulated by SLCO4A1-AS1. Finally, rescue assays demonstrated melanoma cell malignant behaviours suppressed by SLCO4A1-AS1 knockdown could be reversed by overexpressed PCGF2. Our study suggested that SLCO4A1-AS1 promoted the melanoma cell malignant behaviours via targeting miR-1306-5p/PCGF2, which might facilitate the discovery of novel biomarkers for melanoma treatment.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo Repressor Polycomb 1 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Adv Mater ; 34(13): e2107040, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038356

RESUMO

Carbon material is a promising electrocatalyst for the oxygen reduction reaction (ORR). Doping of heteroatoms, the most widely used modulating strategy, has attracted many efforts in the past decade. Despite all this, the catalytic activity of heteroatoms-modulated carbon is hard to compare to that of metal-based electrocatalysts. Here, a "double-catalysts" (Fe salt, H3 BO3 ) strategy is presented to directionally fabricate porous structure of crystal graphene nanoribbons (GNs)/amorphous carbon doped by pyridinic NB pairs. The porous structure and GNs accelerate ion/mass and electron transport, respectively. The N percentage in pyridinic NB pairs accounts for ≈80% of all N species. The pyridinic NB pair drives the ORR via an almost 4e- transfer pathway with a half-wave potential (0.812 V vs reversible hydrogen electrode (RHE)) and onset potential (0.876 V vs RHE) in the alkaline solution. The ORR catalytic performance of the as-prepared carbon catalysts approximates commercial Pt/C and outperforms most prior carbon-based catalysts. The assembled Zn-air battery exhibits a high peak power density of 94 mW cm-2 . Density functional theory simulation reveals that the pyridinic NB pair possesses the highest catalytic activity among all the potential configurations, due to the highest charge density at C active sites neighboring B, which enhances the interaction strength with the intermediates in the p-band center.

20.
Carbohydr Polym ; 278: 118995, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973797

RESUMO

Driven by its excellent physical and chemical properties, BC (bacterial cellulose) has achieved significant progress in the last decade, rendering with many novel applications. Due to its resemblance to the structure of extracellular matrix, BC-based biomaterials have been widely explored for biomedical applications such as tissue engineering and drug delivery. The recent advances in nanotechnology endow further modifications on BC and generate BC-based composites for different applications. This article presents a review on the research advancement on BC-based biomaterials from fabrication methods to biomedical applications, including wound dressing, artificial skin, vascular tissue engineering, bone tissue regeneration, drug delivery, and other applications. The preparation of these materials and their potential applications are reviewed and summarized. Important factors for the applications of BC in biomedical applications including degradation and pore structure characteristic are discussed in detail. Finally, the challenges in future development and potential advances of these materials are also discussed.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Sistemas de Liberação de Medicamentos , Bactérias Gram-Negativas/química , Engenharia Tecidual , Configuração de Carboidratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA