RESUMO
The environmental fate of strontium (Sr) and cesium (Cs), as the critical radioactive fission products, have raised significant concerns regarding radioactive waste disposal and environmental protection. The current study investigated the distinction in the binding configurations of Sr2+ and Cs+ on various 2:1 phyllosilicate (illite, vermiculite, and montmorillonite) by combining batch adsorption, sequential extraction, and spectroscopic analyses. The results show that strontium adsorption is strongly influenced by pH as well as ionic strength, while there is no significant variability in strontium adsorption by different types of clay minerals. EXAFS analysis confirms the outer complexation of strontium on the planar sites of the clay minerals, i.e., Sr2+ is surrounded by ~8.0 O atoms, RSr-O ≈ 2.6 Å, and that process is mainly realized by ion exchange. In contrast, Cs+ adsorption was markedly influenced by the variety of clay minerals but less by pH and ionic strength, the presence of humic acid (HA) inhibited Cs+ adsorption. The inner-sphere complexation formed mainly at the frayed edge sites on illite, and interlayer sites on vermiculite and montmorillonite, was the dominant mechanism for Cs+ adsorption. In addition, the collapse of the interlayer space of vermiculite induced by Cs+ adsorption on the interlayer sites was responsible for the more stable and irreversible immobilization. The findings in present work highlighted the significance of prevailed mineral in governing environmental migration risk of radionuclides, the revealed adsorption mechanism and binding configuration of Sr2+ and Cs+ on typical phyllosilicates would be referable in constructing a reliable migration model of Sr2+ and Cs+ in natural media.
RESUMO
Resource demand by soil microorganisms critically influences microbial metabolism and then influences ecosystem resilience and multifunctionality. The ecological remediation of abandoned tailings is a topic of broad interest, yet our understanding of microbial metabolic status in restored soils, particularly at the aggregate scale, remains limited. This study investigated microbial resources within soil aggregates from revegetated tailings and applied a vector model of ecoenzymatic stoichiometry to examine how different vegetation patterns (grassland, forest, or bare land control) impact microbial resource limitation. Five-year vegetation restoration significantly elevated carbon (C) and nitrogen (N) concentrations and their stoichiometric ratios in soil aggregates (approximately 2-fold), although these increases were not translated to in the microbial biomass and its stoichiometry. The activities of C- and phosphorus (P)-acquiring extracellular enzymes in these aggregates increased substantially postvegetation, with the most pronounced escalation in macroaggregates (>0.25 mm). The vector model results indicated soil microbial metabolism was colimited by C and P, most acutely in microaggregates (<0.25 mm). This colimitation was exacerbated by monotypic vegetation cover but mitigated under diversified vegetation cover. Soil nutrient stoichiometric ratios in vegetation restoration controlled microbial resource limitation, overshadowing the impact of heavy metals. Our findings underscore that optimizing resource allocation within soil aggregates through strategic revegetation can enhance microbial metabolism in tailings, which advocates for the implementation of diverse vegetation covers as a viable strategy to improve the ecological development of degraded landscapes.
Assuntos
Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Carbono/metabolismo , Fósforo/metabolismo , EcossistemaRESUMO
The photocatalytic U(VI) reduction is regarded as an effective strategy for recovering uranium. However, its application in seawater uranium extraction poses challenges due to limited reactivity in the presence of carbonate and under atmospheric conditions. In the present study, a photoactive hydrogel made of carboxyl-functionalized g-C3N4/CdS (CCN/CdS) is designed for extracting uranium. The carboxyl groups on g-C3N4 enhance the affinity toward uranyl ions while CdS facilitates the activation of dissolved oxygen. Under atmospheric conditions, the prepared hydrogel catalyst achieves over 80% reduction rate of 0.1 mM U(VI) within 150 min in the presence of carbonate, without the assistance of any electron donors. During the photocatalytic process, U(VI) is reduced to form UO2+x. The hydrogel catalyst exhibits a high uranium extraction capacity of >434.5 mg gâ»1 and the products can be effectively eluted using a 0.1 M NaCO3 solution. Furthermore, this hydrogel catalyst offers excellent stability, good recyclability, outstanding antifouling activity, and ease of separation, all of which are desirable for seawater uranium extraction. Finally, the test in real seawater demonstrates the successful extraction of uranium from seawater using the prepared hydrogel catalyst.
RESUMO
Biochar has attracted significant attention due to its excellent environmental benefits and extensive applications. Recently, a consensus has been accepted that biochar can act as a photocatalyst and trigger effective photocatalytic reactions in the environment, which is important to energy conversion and the cycle of elements. However, its photocatalytic processes and the corresponding environmental impacts need to receive more and due attention. In this review, we provide a comprehensive summary of the underlying correlations among the pyrolytic evolution of biomass, the structure characteristic of biochar, and the resultant photocatalytic performance. Moreover, the photocatalytic processes and the influence of environmental factors were elaborately investigated on biochar. Finally, future tendencies and challenges in the photocatalysis of biochar have been prospected in the environmental field. This review has offered innovative insights into the photocatalytic essential of biochar and highly enhanced the understanding of its environmental impact.
Assuntos
Carvão Vegetal , Carvão Vegetal/química , BiomassaRESUMO
In this study, a series of biochar were prepared via pyrolyzing cellulose-rich pakchoi (PBC) and lignin-rich corncob (CBC) to explore the photoreduction process of Cr(VI). X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirmed higher oxygenated functional groups in PBC (48.9%-57.1%), whereas CBC exhibited more aromatization properties due to the stable aromatic network in lignin. For PBC, the valence bands decreased from 1.42 eV to 1.20 eV with the increase of pyrolysis temperature from 300 °C to 500 °C; however, an opposite trend was observed for CBC. The photoreduction of Cr(VI) clearly showed that both PBC and CBC had the best performance at the carbonization temperature of 300 °C (named PBC300 and CBC300). It is noted that PBC300 exhibited the most effective photoreduction of Cr(VI), which was about 1.3 times higher than that of CBC300. The maximum reduction capacities of Cr(VI) were 68.2 mg g-1 on PBC300 and 66.1 mg g-1 on CBC300 at pHâ¼2.0. Compared with the insoluble char substances, dissolved black carbons made more contributions for Cr(VI) photoreduction, â¼70% in PBC and almost 100% in CBC, which suggested that in the case of PBC, the insoluble char and the corresponding dissolved black carbons play an important role in the photoreduction of Cr(VI). However, only dissolved black carbons contributed to Cr(VI) photoreduction on CBC. As the key reaction pathway, the interfacial electron transport dominated Cr(VI) reduction on PBC and CBC. Moreover, the radical of â¢O2- had some contribution to the reduction of Cr(VI) only in the PBC system. Interestingly, â¢OH could promote the photoreduction of Cr(VI) in both PBC and CBC systems, which might be due to the fact that â¢OH facilitated the formation of small molecule fragments. These findings provide an essential basis for evaluating the environmental impact of photocatalytic behaviors of biochar.
Assuntos
Lignina , Poluentes Químicos da Água , Celulose , Carvão Vegetal/química , Cromo/análise , Adsorção , Poluentes Químicos da Água/análiseRESUMO
The effects of microplastics on crop plants have attracted growing attention. However, little is known about the effects of microplastics and their extracts on the growth and physiology of wheat seedlings. In this study, hyperspectral-enhanced dark field microscopy and scanning electron microscopy were used to accurately track the accumulation of 200 nm label-free polystyrene microplastics (PS) in wheat seedlings. The PS accumulated along the root xylem cell wall and in the xylem vessel member and then moved toward to the shoots. In addition, lower concentration (≤ 5 mg·L-1) of microplastics increased root hydraulic conductivity by 80.6 %- 117.0 %. While higher PS treatment (200 mg·L-1) considerably decreased plant pigments content (chlorophyll a, b, and total chlorophyll) by 14.8 %, 19.9 %, and 17.2 %, respectively, and decreased root hydraulic conductivity by 50.7 %. Similarly, catalase activity was reduced by 17.7 % in root and 36.8 % in shoot. However, extracts from the PS solution showed no physiological effect on wheat. The result confirmed that it was the plastic particle, rather than the chemical reagents added in the microplastics, contributed to the physiological variation. These data will benefit to better understanding on the behavior of microplastics in soil plants, and to providing of convincing evidence for the effects of terrestrial microplastics.
Assuntos
Microplásticos , Plântula , Microplásticos/toxicidade , Plásticos , Triticum , Clorofila A , Poliestirenos/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Previous research studies have confirmed that Zn and Cd are the most predominant heavy metals in the Baiyin district, Gansu province, China. Furthermore, the speciation of Zn and Cd is a key factor in controlling the mobility, bioavailability, and toxicity of metals in Zn/Cd co-contaminated soil. In this study, the speciation of Zn and Cd in different types of agricultural soils including the Yellow River irrigated soil (s3) and sewage irrigated soil (s1 and s2) was investigated and compared by a combination of sequential extraction, bulk X-ray absorption fine structure (XAFS), and micro-X-ray fluorescence (µ-XRF) techniques. The results of the speciation quantified by XAFS were in general agreement with those obtained by sequential extraction, and the combination of both approaches allowed a reliable description of Zn/Cd speciation in soil. The speciation of Zn in the s1 soil exposed around the smelter was similar to speciation of Zn in the sewage irrigated s2 soil. In both soils, Zn was predominantly present as Zn-Al LDH (31-36%), Zn adsorbed on calcite (37-47%), and primary minerals (14-18% sphalerite and 9% franklinite). In contrast, the proportions of organic Zn (23%) and Zn-Al LDH (53%) were significantly higher in the Yellow River irrigated s3 soil, while that of Zn-calcite (24%) was lower. This indicated that Zn in s3 was less mobile and bioavailable than that in s1 and s2 soils. The content of bioavailable Zn in s3 was much lower than the background value and Zn did not pose a threat to the Yellow River irrigated soil. In addition, Cd was strongly correlated with Zn content and exhibited a simpler speciation. Cd adsorbed on illite and calcite was found as the major species in both soil types, posing higher migration and toxicity to the environment. Our study reported the speciation and correlation of Zn/Cd in sierozem soil for the first time and provided a significant theoretical basis for remediation actions to minimize Zn/Cd risks.
Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Cádmio , Raios X , Fluorescência , Esgotos , Síncrotrons , Metais Pesados/análise , Zinco/análise , Carbonato de Cálcio , China , Poluentes do Solo/análiseRESUMO
Phytoremediation of total petroleum hydrocarbons (TPHs) contamination is a process that uses the synergistic action of plants and rhizosphere microorganisms to degrade, absorb and stabilize pollutants in the soil, and has received increasing attention in recent years. However, this technology still has some challenges under certain conditions (e.g., highly alkaline and saline environments). The present study was selected three native plant species (alfalfa, tall fescue, and ryegrass) to remediate petroleum pollutants in greenhouse pot experiments. The results indicate that TPH contamination not only inhibited plant growth, soil chemical properties and soil fertility (i.e. lower plant biomass, chlorophyll, pH, and electrical conductivity), but also increased the malondialdehyde, glutathione, and antioxidant enzyme activities (catalase and polyphenol oxidase). Further, correlation analysis results illustrated that TPH removal was strongly positively correlated with chlorophyll, soil fertility, and total organic carbon, but was negatively correlated with dehydrogenase, polyphenol oxidase, pH, and electrical conductivity. The highest TPHs removal rate (74.13%) was exhibited by alfalfa, followed by tall fescue (61.79%) and ryegrass (57.28%). The degradation rates of short-chain alkanes and low rings polycyclic aromatic hydrocarbons (PAHs) were substantially higher than those of long-chain alkanes and high rings PAHs. The findings of this study provide valuable insights into petroleum decontamination strategies in the highly saline - alkali environments.
Assuntos
Poluentes Ambientais , Lolium , Petróleo , Poluentes do Solo , Álcalis , Solo/química , Petróleo/análise , Poluentes do Solo/análise , Plantas/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/química , Alcanos , Poluentes Ambientais/análiseRESUMO
The environmental behavior of radioactive cesium (RCs) in contaminated areas is generally governed by soil and sediment components and natural weathering conditions. In this study, desorption tests and spectroscopic approaches were used to explore the interaction between the weathering of micaceous minerals (i.e., biotite and phlogopite) and the adsorption of Cs+ and the critical role of weathering in the environmental behavior of RCs. Results showed that the reaction sequence between weathering and Cs+ adsorption significantly affected the surface species of Cs+ and the structure of biotite and phlogopite. Regardless of whether it occurred before, after, or during Cs+ adsorption, weathering generated more high-affinity adsorption sites, namely, interlayer sites (ITs) and frayed edge sites (FESs), to different extents, and then facilitated the uptake of Cs+ at FESs and ITs on micaceous minerals in a poorly exchangeable state. Cs+ stabilized the micaceous mineral structure once it was absorbed within collapsed interlayers by hindering cation exchange and preventing further destruction during weathering. As important weathering factors, high temperature and Ca2+ content promoted the binding of Cs+ in the interlayers of biotite and phlogopite by enhancing interlayer cation exchange. These findings are beneficial for a better understanding of the environmental behaviors of RCs in the hydrosphere and pedosphere.
Assuntos
Radioisótopos de Césio , Césio , Adsorção , Césio/análise , Minerais/química , Silicatos de AlumínioRESUMO
Single-atom catalysts (SACs) have attracted extensive interest to catalyze the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. However, the development of SACs with high selectivity and long-term stability is a great challenge. In this work, carbon vacancy modified Fe-N-C SACs (FeH -N-C) are practically designed and synthesized through microenvironment modulation, achieving high-efficient utilization of active sites and optimization of electronic structures. The FeH -N-C catalyst exhibits a half-wave potential (E1/2 ) of 0.91 V and sufficient durability of 100 000 voltage cycles with 29 mV E1/2 loss. Density functional theory (DFT) calculations confirm that the vacancies around metal-N4 sites can reduce the adsorption free energy of OH*, and hinder the dissolution of metal center, significantly enhancing the ORR kinetics and stability. Accordingly, FeH -N-C SACs presented a high-power density and long-term stability over 1200 h in rechargeable zinc-air batteries (ZABs). This work will not only guide for developing highly active and stable SACs through rational modulation of metal-N4 sites, but also provide an insight into the optimization of the electronic structure to boost electrocatalytical performances.
RESUMO
The photocatalytic conversion of soluble U(VI) into insoluble U(IV) is a robust strategy to harvest aqueous uranium, but remains challenging owing to the intermittent availability of solar influx and reoxidation of U(IV) without illumination. Herein, a dual platform based on K+ and cyano group co-decorated poly(heptazine imide) (K-CN-PHI) is reported that can drive persistent U(VI) extraction upon/beyond light. K-CN-PHI achieves the photocatalytic reduction of U(VI) with a reaction rate of 0.89 min-1 , being 47 times greater than that over pristine carbon nitride (PCN). This system can further be triggered by light to form long-living radicals, driving the reduction of U(VI) in the dark for over 3 d. The flexible structural K+ as counterions stabilize the electrons trapped by cyanamide groups, enabling the long lifetime of the generated radicals. The results collectively prove K-CN-PHI to be a novel and efficient photocatalyst enabling persistent U(VI) extraction around the clock, and broadening the practical applications of the photocatalytic extraction of U(VI).
RESUMO
Clarifying the reaction process and specific mechanism between variable-valence elements and oxidized carbon nanoparticles is essential to evaluate the environmental impact of carbon nanomaterials. In this study, the photocatalytic reduction of Cr(VI) on oxidized carbon nanotubes (OCNTs), oxidized graphene ribbons (OGRs), and graphene oxide sheets (GOs) was explored by batch experiments and spectroscopic analyses. The reaction efficiencies strongly depended on the number of oxygenated groups in the oxidized carbon nanoparticles. The abundant oxygenated groups enabled the GOs to exhibit the highest photocatalytic activity, followed by the OGRs and OCNTs. As a result, the photoreduction efficiency of Cr(VI) reached 96% for GOs, whereas those of OGRs and OCNTs were only 40% and 13%, respectively. In addition, different types of oxygenated groups exhibited various activities based on molecular model tests, following the sequence carboxylic > hydroxyl > carbonyl > ether > aldehyde > edge. Based on the underlying relationship between the oxygenated groups, topological structures, and mechanical strain in the carbon nanoparticles, we speculate that mechanical strain plays a critical role in the formation of oxygenated groups, thereby regulating their photocatalytic activities. The findings in this work provide novel insights into the roles of oxygenated groups and the mechanical strain of carbon nanoparticles in their environmental behavior.
RESUMO
Investigate the effect of soil organic matter (SOM) and low molecular weight organic acids (LMWOAs) on minerals adsorption of PAHs. Batch adsorption experiments have been carried out to study the adsorption of PAHs (Naphthalene (NaP), Phenanthrene (Phe) and Pyrene (Pyr)) by minerals (Montmorillonite (Mnt), kaolinite (Kln) and calcite (Cal)). This research found that compared with Kln and Cal, Mnt showed the maximum adsorption capability for PAHs. And the order of PAHs adsorption by Mnt was: Pyr > Phe > Nap, which corresponds to the octanol-water partition coefficient (Kow) of different PAHs. The adsorption kinetic and isotherm were well fitted by Pseudo-second-order kinetic model, Freundlich and Linear isotherm model. Furthermore, inorganic ions (Ca2+) impacted PAHs adsorption by competitive adsorption and cation-π interactive. Cal has the maximum desorption of PAHs among three minerals, and there was desorption hysteresis phenomenon. Field emission-scanning electron microscope (Fe-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) analysis indicated that SOM enhanced the sorption of PAHs by van der Waals, hydrogen bonding, π-π interactions, and chemical bonding. LMWOAs significantly inhibited PAHs adsorption and promote PAHs desorption from the minerals. As a result, LMWOAs increased of PAHs bioavailability, which provide a new strategy to improve PAHs cleanup efficiency.
Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Peso Molecular , Minerais , Hidrocarbonetos Policíclicos Aromáticos/análise , Bentonita/química , Solo , Caulim , Carbonato de Cálcio , AdsorçãoRESUMO
In this study, the cytotoxicity and toxic mechanism of carbon quantum dots (CQDs) to E. coli were evaluated in vitro. The synthetic CQDs were extremely small in size (~2.08 nm) and displayed strong fluorescence. The results demonstrated that CQDs showed good biocompatibility with E. coli within a short culture time. However, when the exposure time exceeded 24 h, the toxicity of CQDs became apparent, and the contents of reactive oxygen species, lactate dehydrogenase, and the crystal violet absorption rate increased significantly. To further explore the cytotoxic mechanism, approaches including confocal laser scanning microscopy, scanning electron microscopy, and biological transmission electron microscopy combined with zeta potential tests, osmotic pressure measurement, and comet assays were performed. On the one hand, the CQDs altered the surface charges of cells and induced lipid peroxidation by adhesion on the surface of E. coli, leading to an increase in the permeability of the cell wall. On the other hand, when the concentration of CQDs reached 200 µg/mL, the osmotic pressure of the extracellular environment was significantly reduced. These are the main factors that lead to cell edema and death. Finally, the comet assays confirmed that CQDs could induce DNA damage, which could inhibit the proliferation of E. coli.
RESUMO
Petroleum contamination surrounding oilfields has attracted more concerns. However, the levels, distribution and source of petroleum of Changqing Oilfield soil still remain lots of knowns, which is important for local environmental protection. Given soil contamination issues in Changqiong Oilfield were investigated. The maximum concentrations of total petroleum hydrocarbons (TPHs), N-alkanes (TNAs) and polycyclic aromatic hydrocarbons (PAHs) were determined to be 1960.29, 96.13 and 0.82 mg/kg, respectively. TPHs were higher in the north than the south of the study area. TPHs decreased in the horizontal and vertical distribution as soil depth and distance from oil wells increased. Source analysis showed that TNAs mainly originated from petroleum, PAHs were controlled by petroleum spills, combustion and traffic. Correlation analysis implied that TPHs residues had an effect on soil environmental quality. This study have important implications for understanding the environmental behavior of petroleum and can provide support for petroleum remediation and risk control.
Assuntos
Poluentes Ambientais , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Petróleo/análise , Campos de Petróleo e Gás , Solo/química , Poluentes do Solo/análise , Poluentes Ambientais/análise , Hidrocarbonetos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Monitoramento AmbientalRESUMO
Glomalin-related soil protein (GRSP) is an essential bioactive component that may respond to heavy metal stress; however, its exact influence on metal bioavailability and the associated mechanism remains poorly understood. This study investigated the speciation and distribution of heavy metals in soil aggregates associated with GRSP through macroscopic and microscopic approaches. A field study showed that the metal ions were distributed to the macro-aggregate fraction by partitioning the particle size classes during phytoremediation. Partial least squares path modeling (PLS-PM) demonstrated that the heavy metal bioavailability was negatively affected by aggregate stability (61.5%) and GRSP content (52.8%), suggesting that the soil aggregate properties regarding GRSP were vital drivers in mitigating environmental risk closely associated with toxic metal migration in soil-plant systems. The nonideal competitive adsorption (NICA)-Donnan model fitting suggested that GRSP were rich in acid site density, and the complexation with deprotonated groups dominated the speciation of heavy metals in soil. Further, the microfocus X-ray absorption/fluorescence spectroscopy analysis indicated that GRSP might promote the formation of stable metal species by binding with sulfur-containing sites. This study highlights the role of GRSP in heavy metal sequestration in contaminated soils, providing new guidance on the GRSP intervention for phytoremediation strategies.
Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Proteínas Fúngicas/química , Solo/química , Poluentes do Solo/metabolismoRESUMO
Variations in the chemical composition of geofluids and of gas fluxes are significant parameters for understanding mud volcanism and correctly estimate their emissions in carbon species, particularly greenhouse gas, methane. In this study, muddy water and gas samples were collected from the Anjihai, Dushanzi, Aiqigou, and Baiyanggou mud volcanoes in the southern Junggar Basin during the four seasons, around a year. This region hosts the most active mud volcanism throughout China. Gas and water were analyzed for major molecular compositions, carbon and hydrogen isotopes of the gas phase, as well as cations and anions, hydrogen and oxygen isotopes of water. The emitted gases are dominated by CH4 with some C2H6, CO2, and N2. The seasonal changes in the chemical composition and carbon isotopes of emitted gases are not significant, whereas clear variations in the amounts of cations and anions dissolved in the water are reported. These are higher in spring and summer than autumn and winter. The CH4, CO2, and C2H6 fluxes are 157.3-1108 kg/a, 1.8-390.1 kg/a, and 10.2-118.7 kg/a, respectively, and a clear seasonal trend of the gas seepage flux has been observed. In January, the macro-seepage flux of open vents is ≥65 % higher than in April, whereas the micro-seepage flux significantly decreased, probably due to the frozen shallow ground and blockage of soil fractures around the vents by heavy snow and ice during January. This probably causes an extra gas pressure transferred to the major vents, resulting in higher flux of the macro-seepage in the cold season. However, the total flux of the whole mud volcano system is generally consistent around a year.
Assuntos
Dióxido de Carbono , Óxido Nitroso , Carbono , Dióxido de Carbono/análise , China , Monitoramento Ambiental , Gases , Hidrogênio , Metano/análise , Óxido Nitroso/análise , Estações do Ano , ÁguaRESUMO
The adsorption behaviors of cellulose and lignin biochar depend on the evolution of their oxygen-containing groups to some extent. In this study, cellulose-rich pakchoi and lignin-rich corncob were selected to prepare the pyrolytic biochar at variable temperatures, named PBC and CBC, respectively. Their structure-function relationships were in-depth studied via the combination of the adsorption experiments of U(VI) and comprehensive spectral analyses. The maximal adsorption capacity of PBC 300, obtained at 300 °C, was measured as 46.62 mg g-1 for U(VI), which was â1.3 times higher than 35.60 mg g-1 of CBC 300. U(VI) adsorption on PBC and CBC were predominantly ascribed to the coordination interaction between oxygen-containing groups and U(VI). Interestingly, the main complexation groups were distinct in both biochars due to the different inherent evolutions of cellulose and lignin. Volatile d-glucose chains in cellulose were apt to degrade rapidly, and the formed carboxyls acted as the most important sites in PBC. However, the stable aromatic network in lignin led to a slow degradation, and more hydroxyls thus remained in CBC, which controlled U(VI) adsorption. In this study, we obtained greatly cost-effective adsorbents of U(VI) and provided some essential insights into understanding the structural evolution-function relationship of cellulose and lignin biochar.
Assuntos
Celulose , Lignina , Adsorção , Lignina/química , Oxigênio , Carvão Vegetal/química , GlucoseRESUMO
The environmental behaviors of uranium closely depend on its interaction with natural minerals. Ferrihydrite widely distributed in nature is considered as one main natural media that is able to change the geochemical behaviors of various elements. However, the semiconductor properties of ferrihydrite and its impacts on the environmental fate of elements are sometimes ignored. The present study systematically clarified the photocatalysis of U(VI) on ferrihydrite under anaerobic and aerobic conditions, respectively. Ferrihydrite showed excellent photoelectric response. Under anaerobic conditions, U(VI) was converted to U(IV) by light-irradiated ferrihydrite, in the form of UO2+x (x < 0.25), where â¢O2− was the dominant reactive reductive species. At pH 5.0, ~50% of U(VI) was removed after light irradiation for 2 h, while 100% U(VI) was eliminated at pH 6.0. The presence of methanol accelerated the reduction of U(VI). Under aerobic conditions, the light illumination on ferrihydrite also led to an obvious but slower removal of U(VI). The removal of U(VI) increased from ~25% to 70% as the pH increased from 5.0 to 6.0. The generation of H2O2 under aerobic conditions led to the formation of UO4â¢xH2O precipitates on ferrihydrite. Therefore, it is proved that light irradiation on ferrihydrite significantly changed the species of U(VI) and promoted the removal of uranium both under anaerobic and aerobic conditions.
Assuntos
Peróxido de Hidrogênio , Urânio , Meios de Cultura , Compostos Férricos , IluminaçãoRESUMO
Fungi play significant roles in the geochemical processes of heavy metals in the environment. However, the interaction between heavy metals and fungi, especially at the cellular level, is quite complicated and remains unknown. This study explored the mutual interaction mechanism between Pb2+ and Trichoderma viride by combining batch experiments, spectroscopy, and in vitro approaches. Batch experiments revealed that Pb2+ had toxic effect on T. viride, originally causing the biomass of T. viride decreased from 1.3 g in the control group to 0 g in the presence of 200 mg/L Pb2+. The difference in biomass further led to varied pH, even decreasing from 5.7 at the outset to 3.4 due to the acid-production properties of T. viride. Moreover, structural deformation and damage of T. viride mycelium appeared when exposed to Pb2+, and were more evident at a higher dose of Pb2+ exposure. The growth curve exhibited that T. viride gradually adapted to Pb2+ exposure, which related to Pb2+ exposure concentration. Further, intracellular and extracellular secretions of T. viride changed with varying exposure concentrations of Pb2+, indicating that T. viride adapted differently to different concentrations of Pb2+, and MT participated in the detoxification of T. viride. SEM-EDX showed that T. viride could bio-adsorb and bioaccumulate more Pb2+ when exposed to more Pb2+, which was closely related to the content of P. And carbonyl, phosphate, and amino groups of T. viride participated in the Pb2+ biosorption onto T. viride, as evidenced by FT-IR and XPS. Meanwhile, the biomineralization and reduction of Pb2+ by T. viride were observed by XRD and XPS, which might be a possible factor for Pb2+ biosorption and bioaccumulation. CLSM showed that the bio-adsorbed and bioaccumulated Pb2+ were mainly distributed in the membrane of T. viride mycelium.