Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839050

RESUMO

Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.

2.
Chin Med ; 18(1): 127, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779204

RESUMO

Polyphenols are the main component of Phyllanthus emblica (PE). However, polyphenols are so easy to transform that it is unknown that how drying methods driven by heating affect the anti-fatigue effect of PE. This manuscript investigated the effects of five drying methods on the chemical composition transformation and anti-fatigue of PE, and discussed the action mechanism. The results suggested that the anti-fatigue effect of PE with hot-air-dried at 100 °C was the best, which was as 1.63 times as that with freeze-drying. Ellagic acid (EA) may be a key component of PE in anti-fatigue, and its mechanism of action may be related to regulating intestinal microbiota, protecting mitochondria, and regulating energy metabolism. This study first revealed the thermal transformation of polyphenols in PE, found the most effective strategy for enhancing the anti-fatigue function, and explores its action mechanism.

3.
Chin Herb Med ; 15(3): 360-368, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37538854

RESUMO

Phyllanthi Fructus is a highly unique medicine and food homologous item, which exhibits distinctive flavor, notable nutritional value, and abundant pharmacological activity. It has enormous potential in the creation of health products and pharmaceuticals. However, due to the unique laws of quality formation and transfer of Phyllanthi Fructus, its appearance, shape, chemical compositions, nutrients, and sensory flavors are frequently greatly influenced by botanical resources, the processing and storage conditions. As a result, the current quality evaluation model is difficult to meet the needs of Phyllanthi Fructus as a medicine and food homologous item in the development of diversified products. This paper constructs the hierarchical utilization mode of Phyllanthi Fructus based on its unique quality formation and transmission laws, explores the quality evaluation model for food-oriented use and medicinal-oriented use, respectively, and systematically describes the quality evaluation idea under diversified application scenarios. This paper aims to serve as a reference for the construction of a quality evaluation model suitable for the medicine and food homologous item of Phyllanthi Fructus.

4.
J Vis Exp ; (194)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37125797

RESUMO

The extraction intermediate of traditional Chinese medicine is the key intermediate in the preparation process, and its stability has an important impact on the effectiveness and quality of the final product. However, existing stability evaluation methods are often time-consuming and labor-intensive, requiring long-term observation and the operation of complex equipment (such as high-performance liquid chromatography), and it is difficult to obtain more physical information about the instability of the system. Therefore, there is an urgent need to establish a fast and accurate stability analysis technology for traditional Chinese medicine. Multiple light scattering is a cutting-edge analytical method that can accurately and rapidly evaluate the stability of traditional Chinese medicines in an environment-friendly manner without changing the nature or state of the sample or using organic reagents. In this work, using the precise scanning data of multiple light scattering, the present protocol rapidly acquired the variation curves for layer thickness, particle migration speed, and average particle size over time. This enabled the precise identification of the mechanism and crucial characteristics causing the system's instability in its early stages. Of note, the research period for the extraction process can be considerably shortened by the detailed quantification of the system stability, which also allows for a quick, accurate, and in-depth analysis of the effects of various extraction processes on the stability of Phyllanthus emblica L.


Assuntos
Phyllanthus emblica , Phyllanthus emblica/química , Medicina Tradicional Chinesa , Extratos Vegetais
5.
Food Chem ; 405(Pt B): 134946, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36410216

RESUMO

Astringency is a feeling of dryness in the mouth. Microscopically, it is manifested in the diversity of ingredients and mechanisms that can cause astringency, astringent components are mainly flavonoids, phenolic acids, tannin and other polyphenols components. Macroscopically, it is manifested in the rich variety of foods with astringent taste, because polyphenols are common secondary metabolites of plants. With the improvement of people's living standards, the demand for reducing or removing astringency in food and medicine is also increasing, and polysaccharides, as commonly used flavoring agents and food additives, have become the ideal choice for decreasing astringency. In this paper, the material basis, molecular mechanism, possible pathways and related cases of polysaccharides moderating of astringency are mainly reviewed, so as to illustrate the feasibility of polysaccharides decreasing of astringency and provide a reference for reducing the astringency of food and drugs.


Assuntos
Adstringentes , Polifenóis , Humanos , Polissacarídeos , Taninos , Alimentos
6.
Molecules ; 27(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36364203

RESUMO

Fatigue seriously affects people's work efficiency and quality of life and has become a common health problem in modern societies around the world. The pathophysiology of fatigue is complex and not fully clear. To some degree, interactions between gut microbiota and host may be the cause of fatigue progression. Polyphenols such as tannin, tea polyphenols, curcumin, and soybean isoflavones relieve fatigue significantly. Studies have shown that the gut microbiota is able to convert these active compounds into more active metabolites through intestinal fermentation. However, the mechanism of anti-fatigue polyphenols is currently mainly analyzed from the perspective of antioxidant and anti-inflammatory effects, and changes in gut microbiota are rarely considered. This review focuses on gut microecology and systematically summarizes the latest theoretical and research findings on the interaction of gut microbiota, fatigue, and polyphenols. First, we outline the relationship between gut microbiota and fatigue, including changes in the gut microbiota during fatigue and how they interact with the host. Next, we describe the interactions between the gut microbiota and polyphenols in fatigue treatment (regulation of the gut microbiota by polyphenols and metabolism of polyphenols by the gut microbiota), and how the importance of potential active metabolites (such as urolithin) produced by the decomposition of polyphenols by gut microbiota is emerging. Based on the new perspective of gut microbiota, this review provides interesting insights into the mechanism of polyphenols in fatigue treatment and clarifies the potential of polyphenols as targets for anti-fatigue product development, aiming to provide a useful basis for further research and design.


Assuntos
Microbioma Gastrointestinal , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/metabolismo , Microbioma Gastrointestinal/fisiologia , Qualidade de Vida , Extratos Vegetais
7.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5533-5544, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951204

RESUMO

Phyllanthi Fructus, a unique Chinese and Tibetan medicinal plant with both edible and medical values, has high potential of cultivation and development. The resources of Phyllanthi Fructus in China are rich, mainly distributed in Yunnan, Sichuan, Fujian, Guangdong, Guangxi, etc. Phyllanthi Fructus is widely used in the clinical practice of Chinese medicine and plays an important role in Tibetan medicine, Uyghur medicine, Yi medicine, and Mongolian medicine. Phyllanthi Fructus mainly contains phenolic acids,tannins, terpenes, sterols, fatty acids, flavonoids, amino acids and other compounds. Modern pharmacological studies show that Phyllanthi Fructus has antioxidant, anticancer, blood lipid-lowering, liver protective, antimicrobial, anti-inflammatory, and immune regulatory activities. In this paper, the research status of Phyllanthi Fructus was reviewed from the aspects of herbal textual research,chemical composition, and pharmacological action. The quality markers(Q-markers) of Phyllanthi Fructus were predicted and analyzed from the aspects of biogenic pathway, specificity and measurability of chemical components, efficacy, properties, new clinical uses, drug-food homology, and transformation of polyphenols. The results will provide a scientific basis for the quality control, quality evaluation, and standard formulation of Phyllanthi Fructus.


Assuntos
Medicamentos de Ervas Chinesas , Frutas , China , Medicina Tradicional Tibetana , Controle de Qualidade
8.
Front Pharmacol ; 12: 664607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290606

RESUMO

Background: Triphala is a traditional polyherbal formula used in Indian Ayurvedic and Chinese Tibetan medicine. A wide range of biological activities have been attributed to Triphala, but the impact of various extraction methods on efficacy has not been determined. Purpose: The study aimed to evaluate Triphala extracts obtained by various methods for their hepatoprotective effects and molecular mechanisms in a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Methods: HPLC fingerprinting was used to characterize the chemical characteristics of Triphala extracts obtained by (a) 0.5 h ultrasonication, (b) 2 h reflux, and (c) 4 h reflux. Hepatoprotective efficacy was evaluated in a mouse model of CCl4-induced liver damage. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured, as well as the liver antioxidant and inflammatory markers malondialdehyde superoxide dismutase glutathione peroxidase (GSH-Px), TNF-α, and IL-6. Gene and protein expression of Nrf-2 signaling components Nrf-2, heme oxygenase (HO-1), and NADPH Quinone oxidoreductase (NQO-1) in liver tissue were evaluated by real-time PCR and western blotting. Results: Chemical analysis showed a clear difference in content between extracts produced by ultrasonic and reflux methods. The pharmacological analysis showed that all three Triphala extracts reduced ALT, AST, MDA, TNF-α, and IL-6 levels and increased SOD and GSH-Px. Triphala extracts also induced transcript and protein expression of Nrf-2, HO-1, and NQO-1. Conclusion: Triphala extract prevents CCl4-induced acute liver injury. The ultrasonic extract of Triphala was most effective, suggesting that hepatoprotection may be related to the larger tannins via activation of Nrf-2 signaling.

9.
Biomed Pharmacother ; 140: 111787, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091181

RESUMO

OBJECTIVE: Explore the effects of high-temperature reflux extraction and low-temperature decompressing inner ebullition on Triphala's chemical composition and anti-chronic pharyngitis activity. METHODS: The network pharmacology was used to analyze the material basis, targets and pathways of Triphala for chronic pharyngitis. HPLC were used to compare the fingerprint profile and content of components between the two extracts. The antioxidant and anti-chronic pharyngitis activities of the two extracts were compared by DPPH assay and ammonia induced chronic pharyngitis model in rats. RESULTS: The network pharmacology results showed that the active ingredients of Triphala for chronic pharyngitis are epigallocatechin-3-gallate, (+)-catechin, epicatechin, epicatechin gallate, (+)-gallocatechin, quercetin, luteolin, leucodelphinidin and other flavonoids; phenolic acids such as gallic acid and ellagic acid; alkaloids such as ellipticine, cheilanthifoline; hydrolyzed tannins such as corilagin and chebulic acid. The high-temperature reflux extract and the low-temperature decompressing inner ebullition extract have extremely significant differences in the fingerprint profile. Among them, the content of gallic acid, ellagic acid, chebulic acid, catechin, epicatechin, corilagin, quercetin, and epicatechin gallate in the reflux extract is 1.1-5.3 times as much as decompressing inner ebullition extract. The free radical scavenging ability of reflux extract is significantly stronger than that of decompression extract (p < 0.01), and it has a repairing effect on pharyngeal mucosal damage (reducing keratinization or hyperplasia of mucosal epithelium, reducing inflammatory cell infiltration and bleeding), and reducing IL-1ß (P<0.05), IL-6 (p<0.05), TNF-α overexpression ability is stronger than the decompressing inner ebullition extract. CONCLUSIONS: gallic acid, ellagic acid, chebulic acid, catechin, epicatechin, corilagin and epicatechin gallate are the basic aglycones or oligomers of tannin. High temperature reflux extraction can significantly promote the occurrence of the hydrolysis of tannins and significantly increases the content of these components.Therefore, its anti-chronic pharyngitis activity is enhanced. It is suggested that high temperature reflux extraction should be used in the treatment of chronic pharyngitis.


Assuntos
Faringite/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Temperatura , Animais , Comportamento Animal/efeitos dos fármacos , Compostos de Bifenilo/química , Doença Crônica , Citocinas/sangue , Feminino , Masculino , Faringite/sangue , Faringite/patologia , Faringe/patologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas , Ratos Sprague-Dawley
10.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1034-1042, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33787094

RESUMO

Phyllanthus emblica is a kind of traditional medicine and medicinal and edible plant, with rich variety resources and high development value. It is a key poverty alleviation variety in China at present. As P. emblica processing industry is rising gradually in recent years, in order to fully develop and utilize its industrial resources, this paper systematically introduces current comprehensive development and utilization of P. emblica, discusses the problems in P. emblica processing industry, and puts forward comprehensive development and utilization strategies and industrial models in terms of cultivation, breeding, grading, quality evaluation and waste recycling, so as to provide a certain reference for promoting the high-quality development of P. emblica industry in China.


Assuntos
Medicina , Phyllanthus emblica , China , Medicina Tradicional , Melhoramento Vegetal , Extratos Vegetais
11.
Eur J Nutr ; 60(7): 3525-3542, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33439332

RESUMO

Phyllanthus emblica is a fruit widely consumed in subtropical areas, which is rich in polyphenols and other nutrients. There are increasing evidences that as a daily and nutritious fruit, it may have a positive role in controlling diabetic complications. According to the new study, its mechanisms include enhancing the functioning of insulin, reducing insulin resistance, activating the insulin-signaling pathway, protecting ß-cells, scavenging free radicals, alleviating inflammatory reactions, and reducing the accumulation of advanced glycation end products. Owing to its few side effects, and low price, it should be easily accepted by patients and has potential for preventing diabetes. Taken together, Phyllanthus emblica may be an ideal fruit for controlling diabetic complications. This review highlights the latest findings of the role of Phyllanthus emblica in anti-diabetes and its complications, especially clarifies the molecular mechanism of the chemical components related to this effect, and prospects some existing problems and future research directions.


Assuntos
Diabetes Mellitus Tipo 2 , Phyllanthus emblica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Frutas , Humanos , Extratos Vegetais/uso terapêutico , Polifenóis
12.
Front Pharmacol ; 10: 1060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619999

RESUMO

Triphala is a famous herbal formula originated in Asia and is popular in America. Due to the high abundance of polyphenols, its oral liquid is unstable and easy to cause precipitate, which results in the loss of activities. However, complex composition and unclear precipitation mechanism hinders the improvement of stability. In this study, the accumulation of precipitation in the storage and its effect on activity were investigated. Then, an integrated chain of evidence was proposed based on the physical phase, chemical profile, and sediment elements. The results showed that antioxidant activity decreased from IC50 115 to 146 µl before and after 90 days of storage, and the anti-fatigue activity decreased from 30.54 to 28.47 min. Turbiscan Lab Expert observed that particle size increased from 106 to 122 nm, and the turbiscan stability index increased from 0 to 14, which indicated that its stability is continuously decreasing. High performance liquid chromatography (HPLC) fingerprint coupled with multivariate statistical analysis identified that these chemical markers changed significantly, such as gallic acid, catechins, and ellagic acid. Loss of catechins tends to be involved in the formation of phlobaphene precipitation. The fact that the new-born ellagic acid in precipitation (0.47 mg/ml) is significantly higher than that reduced in solution (0.25 mg/ml) indicates that it is not only derived from colloid aging. Microscopic observation combined with energy spectrum analysis further confirmed the existence of the multi-precipitates. The crystalline precipitate is ellagic acid, and the other is phlobaphene. In conclusion, based on the evidence chain analysis, this study revealed a systematic change of the whole polyphenol solution system. It provides a novel perspective to understand the sedimentation formation of polyphenol solution, which is an important theoretical contribution to the preparation of polyphenol solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA