Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838784

RESUMO

With the widespread applications of manufactured nanoparticles (NPs), there are increasing concerns about their potential adverse effects on the environment and living systems. Many studies demonstrated that NPs could significantly affect the growth and development of crop plants. However, knowledge regarding the impacts of NPs on crop quality is rather limited. In this study, the effects of CeO2 NPs (25, 75, and 225 mg Ce/kg) and CeCl3 (25 mg Ce/kg) on the nutritional components of soil-cultivated corn and soybean plants were evaluated. Both treatments tended to decrease the dry weight of grain per plant, while only 225 mg/kg CeO2 NPs on soybean and CeCl3 on corn showed statistical significance compared with the respective control. CeO2 NPs at 225 mg/kg significantly decreased the content of starch in the corn kernels by 18.2% but increased total phenols in soybean seeds by 18.4%. Neither CeO2 NPs nor CeCl3 significantly affected the contents of minerals in corn kernels except for Zn. However, in the case of soybean, the two treatments tended to decrease the contents of P, Zn, Mn, and Mo but increase the content of S. Overall, the results suggest that CeO2 NPs and Ce3+ ions showed similar but not identical effects on corn and soybean plants. CeO2 NPs affect the nutritional quality of crop plants in a species-dependent manner.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Glycine max , Zea mays , Cério/farmacologia , Valor Nutritivo
2.
Environ Sci Technol ; 55(21): 14649-14657, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652129

RESUMO

The time-course association of soil physicochemical properties and fate of CeO2 nanoparticles (NPs) is not well understood. This study for the first time investigated the dissolution and retention of CeO2 NPs (<25 nm) during soil short-term (6 h) and long-term (30 d) aging processes with dynamic redox conditions. Under the additional reductant-induced initial reductive condition, theoretically, up to 220‰ of Ce(IV) was temporarily reductively dissolved within 10 min, accompanied by a slow retention process (180 min) of Ce species in soil solutions. Conversely, the dissolution and slow retention of Ce species were not significant in soil solutions without added reductant. X-ray absorption near edge spectroscopy (XANES) shows that most of Ce species were present as Ce(IV) (94.0%-97.8%) in all soils after a long-term aging process. These results indicate that the soil dynamic redox conditions induced by oxidant/reductant intrinsically determined the different time-course dissolution and retention of CeO2 NPs, highlighting the occasional reductive condition in soil solution that may contribute to the migration and diffusion of Ce species. The time-course study should be also adopted to develop a comprehensive understanding of the nano-soil interactions.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Oxirredução , Solo , Solubilidade
3.
Metallomics ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100933

RESUMO

The influence of morphology on the biological effects of nanomaterials (NMs) has not been well understood. In the present study, we compared the phytotoxicity of rod-shaped nano-cerium dioxide (R-CeO2) and nano-cerium phosphate (R-CePO4) to lettuce plants. The results showed that R-CeO2 significantly inhibited the root elongation of lettuce, induced oxidative damages, and caused cell death, while R-CePO4 was nontoxic to lettuce. The different distribution and speciation of Ce in plant tissues were determined by transmission electron microscopy (TEM) and X-ray absorption near edge spectroscopy (XANES) combined with linear combination fitting (LCF). The results showed that in the R-CeO2 group, part of Ce was transformed from Ce(IV) to Ce(III), while only Ce(III) was present in the R-CePO4 group. When interacting with plants, R-CeO2 is easier to be dissolved and transformed than R-CePO4, which might be the reason for their different phytotoxicity. Although both are Ce-based NMs and have the same morphology, the toxicity of R-CeO2 seems to come from the released Ce3+ ions rather than its shape. This research emphasizes the importance of chemical composition and reactivity of NMs to their toxicological effects.


Assuntos
Cério/toxicidade , Lactuca/crescimento & desenvolvimento , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Fosfatos/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Lactuca/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
4.
NanoImpact ; 22: 100311, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559968

RESUMO

The release of toxic ions from metal-based nanoparticles (NPs) may play an important role in biological effects of NPs. In this life cycle study, physiological and biochemical responses of soil-grown corn (Zea mays) plants exposed to ceria NPs and its ionic counterparts Ce3+ ions at 0, 25, 75 and 225 mg Ce/kg were investigated. Both treatments tended to reduce the fresh weight and height of the plants at 28 days after sowing (DAS), and delay silk appearance and finally decrease fruit weight at harvest. Uptake and distribution of some mineral nutrients, Ca, P, Fe, B, Zn and Mn in the plants were disturbed. None of the treatments significantly affected activities of antioxidant enzymes and MDA contents in the roots and leaves at 28 DAS. At 90 DAS, ceria NPs and Ce3+ ions disturbed the homeostasis of antioxidative systems in the plants, Ce3+ ions at all concentrations provoked significant oxidative damage in the roots and significantly increased MDA levels as compare to the control. The results indicate that the effects of ceria NPs and Ce3+ ions on corn plants varied with different growth stages and ceria NPs had similar but less severe impacts than Ce3+ ions. Speciation analysis revealed there was mutual transformation between CeO2 and Ce3+ in the soil-plant system. It is speculated that Ce3+ ions play a key role in toxicity. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of CeO2 NPs and Ce3+ ions on corn plants.


Assuntos
Cério , Nanopartículas Metálicas , Antioxidantes/farmacologia , Cério/farmacologia , Íons/farmacologia , Nanopartículas Metálicas/toxicidade , Solo/química , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA